三年高考(2017-2019)理科数学高考真题分类汇总:递推数列与数列求和_第1页
三年高考(2017-2019)理科数学高考真题分类汇总:递推数列与数列求和_第2页
三年高考(2017-2019)理科数学高考真题分类汇总:递推数列与数列求和_第3页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

递推数列与数列求和2019年1.(2019天津理19)设是等差数列,是等比数列.已知.(Ⅰ)求和的通项公式;(Ⅱ)设数列满足其中.(i)求数列的通项公式;(ii)求.解析(Ⅰ)设等差数列的公差为,等比数列的公比为,依题意得解得故.所以,的通项公式为的通项公式为.(Ⅱ)(i).所以,数列的通项公式为.(ii).2017、2018年一、填空题1.(2018全国卷Ⅰ)记为数列的前项和,若,则_____.【解析】通解

因为,所以当时,,解得;当时,,解得;当时,,解得;当时,,解得;当时,,解得;当时,,解得.所以.优解

因为,所以当时,,解得,当时,,所以,所以数列是以为首项,2为公比的等比数列,所以,所以.2.(2017新课标Ⅱ)等差数列的前项和为,,,则.【解析】设等差数列的首项为,公差为,则,解得,,∴,所以,所以.二、解答题1.(2018浙江)已知等比数列的公比,且,是,的等差中项.数列满足,数列的前项和为.(1)求的值;(2)求数列的通项公式.【解析】(1)由是,的等差中项得,所以,解得.由得,因为,所以.(2)设,数列前项和为.由,解得.由(1)可知,所以,故,,.设,,所以,因此,,又,所以.2.(2018天津)设是等比数列,公比大于0,其前项和为,是等差数列.已知,,,.(1)求和的通项公式;(2)设数列的前项和为,(i)求;(ii)证明.【解析】(1)设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得从而故所以数列的通项公式为,数列的通项公式为(2)(i)由(1),有,故.(ii)证明:因为,所以,.3.(2017江苏)对于给定的正整数,若数列满足对任意正整数总成立,则称数列是“数列”.(1)证明:等差数列是“数列”;(2)若数列既是“数列”,又是“数列”,证明:是等差数列.【解析】证明:(1)因为是等差数列,设其公差为,则,从而,当时,,所以,因此等差数列是“数列”.(2)数列既是“数列”,又是“数列”,因此,当时,,①当时,.②由①知,,③,④将③④代入②,得,其中,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论