![集合的概念课件_第1页](http://file4.renrendoc.com/view/d36f9d1a1cb7122ec0505c3d9b12ca6a/d36f9d1a1cb7122ec0505c3d9b12ca6a1.gif)
![集合的概念课件_第2页](http://file4.renrendoc.com/view/d36f9d1a1cb7122ec0505c3d9b12ca6a/d36f9d1a1cb7122ec0505c3d9b12ca6a2.gif)
![集合的概念课件_第3页](http://file4.renrendoc.com/view/d36f9d1a1cb7122ec0505c3d9b12ca6a/d36f9d1a1cb7122ec0505c3d9b12ca6a3.gif)
![集合的概念课件_第4页](http://file4.renrendoc.com/view/d36f9d1a1cb7122ec0505c3d9b12ca6a/d36f9d1a1cb7122ec0505c3d9b12ca6a4.gif)
![集合的概念课件_第5页](http://file4.renrendoc.com/view/d36f9d1a1cb7122ec0505c3d9b12ca6a/d36f9d1a1cb7122ec0505c3d9b12ca6a5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
集合的概念Ppt集合的概念Ppt11、学习——旅程这段旅程可以从任何时候开始!未来的成功在现在脚下!2、老师——导游一起分享学习中的快乐、一起体会成长与进步的滋味!3、目的——运用应用数学来解决问题,形成数学的自信每个人都可以根据自己的能力和实际需要学好自己的数学!4、准备——必需品轻松愉快的心情、热情饱满的精神、全力以赴的态度、踏实努力的行动、科学认真的方法、及时真诚的交流1、学习——旅程2文具篮筐.元素是可以一一列举的元素是可以一一列举的文具篮筐.问题不大于5的自然数所组成的集合中有哪些元素?动脑思考探索新知巩固知识典型例题那么如何将这些商品放在指定的篮筐里:积极主动的表现力Q;{-2,0,2,4,6,8,10};感情是没有公式,没有原则,没有道理可循的。学习目标合作的意识
积极主动的表现力勇于探索的精神和求知欲学习数学的乐趣和信心、相关生活经验文具篮筐3开始学习啦!开始学习啦!4第一章集合与充要条件1.1集合的概念第一章集合与充要条件1.1集合的概念5问题某商店进了一批货,包括:面包、饼干、汉堡、彩笔、水笔、橡皮、果冻、薯片、裁纸刀、尺子.那么如何将这些商品放在指定的篮筐里:食品篮筐
.文具篮筐
.
创设情景兴趣导入
操作
问题某商店进了一批货,包括:面包、饼干、汉堡、彩笔、6动脑思考探索新知将某些确定的对象看成一个整体就构成一个集合(简称集).组成集合的对象叫做这个集合的元素..观察你的文具盒,什么是集合?什么是元素?一般采用大写英文字母A,B,C…表示集合,小写英文字母a,b,c…表示集合的元素.
操作
集合与元素动脑思考探索新知将某些确定的对象看7动脑思考探索新知数集
集合自然数集整数集有理数集实数集
字母N
Z
Q
R
集合的类型关注E
空集
A解集B有限集、无限集D数集
C
平面点集
集合动脑思考探索新知数集8动脑思考探索新知.一个给定的集合中的元素都是互不相同的一个给定的集合中的元素必须是确定的一个给定的集合中的元素排列无顺序
确定性无序性互异性例1
判断下列对象是否可以组成集合:(1)小于10的自然数;(2)某班个子高的同学;(3)方程x2-1=0的解;(4)不等式x-2>0的解.不能确定的对象,不能组成集合元素的性质动脑思考探索新知.一个给定的集合中9动脑思考探索新知.元素a是集合A
的元素,记作a∈A,读作a属于A.
元素与集合元素a不是集合A
的元素,记作a
A,读作a不属于A.元素与集合的关系动脑思考探索新知.元素a是集合A10
巩固知识典型例题
元素a是集合A的元素,
a∈A,属于Ï元素a不是集合A的元素,
a
A,不属于0
N;
0.6
Z;
R;
Q;0
.”或“用符号“”填空:
巩固知识典型例题元素a是集合A的元11
运用知识强化练习.教材练习1.1.1运用知识强化练习.教材练习1.1.112创设情景兴趣导入问题不大于5的自然数所组成的集合中有哪些元素?
小于5的实数所组成的集合中有哪些元素?元素是可以一一列举的
只有0、1、2、3、4、5这6个元素
元素无法一一列举但特征明显元素有无穷多个,特征:集合的元素都是实数;(2)集合的元素都小于5.创设情景兴趣导入问题不大于513动脑思考探索新知.列举法.把集合的元素一一列举出来,写在大括号内,元素之间用逗号隔开
.1描述法.在花括号中画一条竖线.竖线的左侧写上集合的代表元素x,并标出元素的取值范围,竖线的右边侧写出元素所具有的特征性质.
2动脑思考探索新知.列举法.把集合的14问题不大于5的自然数所组成的集合中有哪些元素?
小于5的实数所组成的集合中有哪些元素?元素是可以一一列举的
列举法{0,1,2,3,4,5}
动脑思考探索新知元素无法一一列举但特征明显描述法问题不大于5的自然数所组成的集合中有哪些元素?元素是15
巩固知识典型例题.例2
用列举法表示下列集合:⑴大于-4且小于12的全体偶数;⑵方程的解集.用列举法表示集合时,不必考虑元素的排列顺序,但是列举的元素不能出现重复.{-2,0,2,4,6,8,10};{-1,6}.巩固知识典型例题.例2用列举法表示下16
巩固知识典型例题.巩固知识典型例题.17
巩固知识典型例题.例3用描述法表示下列各集合:(1)小于5的整数组成的集合;巩固知识典型例题.例3用描述法表示下18
巩固知识典型例题.例3用描述法表示下列各集合:(2)不等式2x+1≤0的解集;巩固知识典型例题.例3用描述法表示下19
巩固知识典型例题.例3用描述法表示下列各集合:(3)所有奇数组成的集合;巩固知识典型例题.例3用描述法表示下20
巩固知识典型例题.例3用描述法表示下列各集合:(4)在直角坐标系中,由x轴上所有的点组成的集合;巩固知识典型例题.例3用描述法表示下21
巩固知识典型例题.例3用描述法表示下列各集合:(5)在直角坐标系中,由第一象限所有的点组成的集合;巩固知识典型例题.例3用描述法表示下22
运用知识强化练习.教材练习1.1.2运用知识强化练习.教材练习1.1.223
理论升华整体建构.
集合的表示有哪几种方法?各自有什么特点?1如何选择集合的表示法?2列举法、描述法.用列举法表示集合,元素清晰明了;用描述法表示集合,特征性质直观明确;表示集合时,要针对实际情况,选用合适的方法.例如,不等式(组)的解集,一般采用描述法来表示,方程(组)的解集,一般采用列举法来表示理论升华整体建构.集合的表示24
巩固知识典型例题.
例4
用适当的方法表示下列集合:
(1)方程x+5=0的解集;(2)不等式3x-7>5的解集;(3)大于3且小于11的偶数组成的集合;(4)不大于5的所有实数组成的集合;
解{x|x>4}解{-5}解{4,6,8,10}解{x|x≤5}巩固知识典型例题.例4用适当25
巩固知识典型例题.
练习巩固知识典型例题.练习26
元素集合
关系
表示方法
概念特点
归纳小结强化思想高教社元素集合关系表示方法概27
学习行为
学习效果
自我反思目标检测学习方法
学习行为学习效果自我反思目28阅读教材章节1.1书写学习与训练习题1.1实践探究生活中集合知识的应用作业高教社阅读教材章节1.1书写学习与训练习题1.1实践探究生活中29心是最大的骗子,别人能骗你一时,而它却会骗你一辈子。不要常常觉得自己很不幸,世界上比我们痛苦的人还要多。吾日三省吾身:为人谋而不忠乎?与朋友交而不信乎?传不习乎?——《论语·学而》有勇气并不表示恐惧不存在,而是敢面对恐惧、克服恐惧。成功的道路上充满荆棘,苦战方能成功。生活中可以没有诗歌,但不能没有诗意;行进中可以没有道路,但不能没有前进的脚步;工作中可以没有经验,但不能没有学习,人生中可以没有闪光,但不能有污迹。失败只是暂时停止成功,假如我不能,我就一定要;假如我要,我就一定能!恋爱不是慈善事业,不能随便施舍的。感情是没有公式,没有原则,没有道理可循的。可是人们至死都还在执著与追求。浪费时间是一桩大罪过。——卢梭君子坦荡荡,小人长戚戚。——《论语·述而》身体健康,学习进步!心是最大的骗子,别人能骗你一时,而它却会骗你一辈子。身体健康集合的概念Ppt集合的概念Ppt311、学习——旅程这段旅程可以从任何时候开始!未来的成功在现在脚下!2、老师——导游一起分享学习中的快乐、一起体会成长与进步的滋味!3、目的——运用应用数学来解决问题,形成数学的自信每个人都可以根据自己的能力和实际需要学好自己的数学!4、准备——必需品轻松愉快的心情、热情饱满的精神、全力以赴的态度、踏实努力的行动、科学认真的方法、及时真诚的交流1、学习——旅程32文具篮筐.元素是可以一一列举的元素是可以一一列举的文具篮筐.问题不大于5的自然数所组成的集合中有哪些元素?动脑思考探索新知巩固知识典型例题那么如何将这些商品放在指定的篮筐里:积极主动的表现力Q;{-2,0,2,4,6,8,10};感情是没有公式,没有原则,没有道理可循的。学习目标合作的意识
积极主动的表现力勇于探索的精神和求知欲学习数学的乐趣和信心、相关生活经验文具篮筐33开始学习啦!开始学习啦!34第一章集合与充要条件1.1集合的概念第一章集合与充要条件1.1集合的概念35问题某商店进了一批货,包括:面包、饼干、汉堡、彩笔、水笔、橡皮、果冻、薯片、裁纸刀、尺子.那么如何将这些商品放在指定的篮筐里:食品篮筐
.文具篮筐
.
创设情景兴趣导入
操作
问题某商店进了一批货,包括:面包、饼干、汉堡、彩笔、36动脑思考探索新知将某些确定的对象看成一个整体就构成一个集合(简称集).组成集合的对象叫做这个集合的元素..观察你的文具盒,什么是集合?什么是元素?一般采用大写英文字母A,B,C…表示集合,小写英文字母a,b,c…表示集合的元素.
操作
集合与元素动脑思考探索新知将某些确定的对象看37动脑思考探索新知数集
集合自然数集整数集有理数集实数集
字母N
Z
Q
R
集合的类型关注E
空集
A解集B有限集、无限集D数集
C
平面点集
集合动脑思考探索新知数集38动脑思考探索新知.一个给定的集合中的元素都是互不相同的一个给定的集合中的元素必须是确定的一个给定的集合中的元素排列无顺序
确定性无序性互异性例1
判断下列对象是否可以组成集合:(1)小于10的自然数;(2)某班个子高的同学;(3)方程x2-1=0的解;(4)不等式x-2>0的解.不能确定的对象,不能组成集合元素的性质动脑思考探索新知.一个给定的集合中39动脑思考探索新知.元素a是集合A
的元素,记作a∈A,读作a属于A.
元素与集合元素a不是集合A
的元素,记作a
A,读作a不属于A.元素与集合的关系动脑思考探索新知.元素a是集合A40
巩固知识典型例题
元素a是集合A的元素,
a∈A,属于Ï元素a不是集合A的元素,
a
A,不属于0
N;
0.6
Z;
R;
Q;0
.”或“用符号“”填空:
巩固知识典型例题元素a是集合A的元41
运用知识强化练习.教材练习1.1.1运用知识强化练习.教材练习1.1.142创设情景兴趣导入问题不大于5的自然数所组成的集合中有哪些元素?
小于5的实数所组成的集合中有哪些元素?元素是可以一一列举的
只有0、1、2、3、4、5这6个元素
元素无法一一列举但特征明显元素有无穷多个,特征:集合的元素都是实数;(2)集合的元素都小于5.创设情景兴趣导入问题不大于543动脑思考探索新知.列举法.把集合的元素一一列举出来,写在大括号内,元素之间用逗号隔开
.1描述法.在花括号中画一条竖线.竖线的左侧写上集合的代表元素x,并标出元素的取值范围,竖线的右边侧写出元素所具有的特征性质.
2动脑思考探索新知.列举法.把集合的44问题不大于5的自然数所组成的集合中有哪些元素?
小于5的实数所组成的集合中有哪些元素?元素是可以一一列举的
列举法{0,1,2,3,4,5}
动脑思考探索新知元素无法一一列举但特征明显描述法问题不大于5的自然数所组成的集合中有哪些元素?元素是45
巩固知识典型例题.例2
用列举法表示下列集合:⑴大于-4且小于12的全体偶数;⑵方程的解集.用列举法表示集合时,不必考虑元素的排列顺序,但是列举的元素不能出现重复.{-2,0,2,4,6,8,10};{-1,6}.巩固知识典型例题.例2用列举法表示下46
巩固知识典型例题.巩固知识典型例题.47
巩固知识典型例题.例3用描述法表示下列各集合:(1)小于5的整数组成的集合;巩固知识典型例题.例3用描述法表示下48
巩固知识典型例题.例3用描述法表示下列各集合:(2)不等式2x+1≤0的解集;巩固知识典型例题.例3用描述法表示下49
巩固知识典型例题.例3用描述法表示下列各集合:(3)所有奇数组成的集合;巩固知识典型例题.例3用描述法表示下50
巩固知识典型例题.例3用描述法表示下列各集合:(4)在直角坐标系中,由x轴上所有的点组成的集合;巩固知识典型例题.例3用描述法表示下51
巩固知识典型例题.例3用描述法表示下列各集合:(5)在直角坐标系中,由第一象限所有的点组成的集合;巩固知识典型例题.例3用描述法表示下52
运用知识强化练习.教材练习1.1.2运用知识强化练习.教材练习1.1.253
理论升华整体建构.
集合的表示有哪几种方法?各自有什么特点?1如何选择集合的表示法?2列举法、描述法.用列举法表示集合,元素清晰明了;用描述法表示集合,特征性质直观明确;表示集合时,要针对实际情况,选用合适的方法.例如,不等式(组)的解集,一般采用描述法来表示,方程(组)的解集,一般采用列举法来表示理论升华整体建构.集合的表示54
巩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024秋七年级英语上册 Unit 4 Food and Restaurants Lesson 23 The Corner Store说课稿 (新版)冀教版
- 《6的乘法口诀》(说课稿)-2024-2025学年二年级上册数学青岛版
- 2023三年级英语下册 Unit 2 I'm in Class One Grade Three Lesson 7说课稿 人教精通版(三起)
- 《2 我们的课余生活》(说课稿)-2023-2024学年四年级上册综合实践活动吉美版001
- Unit 2 Different Families 第1课时(说课稿)-2024-2025学年人教PEP版(2024)英语三年级上册
- 60米短跑 说课稿-2023-2024学年高三上学期体育与健康人教版必修第一册
- 2025关于质押反担保合同
- Unit 2 Healthy Lifestyle Using language Listening and Speaking 说课稿-2023-2024学年高中英语人教版(2019)选择性必修第三册
- 长沙打包箱房施工方案
- 2024-2025学年高中历史 第五单元 无产阶级革命家 第2课 无产阶级革命导师恩格斯教学说课稿 新人教版选修4
- 心电监护考核标准
- 特种行业许可证申请表
- 古典芭蕾:基本技巧和术语
- 有限空间作业审批表
- 内地居民前往香港或者澳门定居申请表
- DB43-T 2612-2023林下竹荪栽培技术规程
- 三下《动物的一生》教材解读
- 神木市孙家岔镇神能乾安煤矿矿山地质环境保护与土地复垦方案
- 非煤矿山安全应急预案
- 浙江省公安民警心理测验考试题目
- 一图看懂《诊所备案管理暂行办法》学习解读课件
评论
0/150
提交评论