2023学年河南省林州一中分校林虑中学高三下学期第六次检测数学试卷(含解析)_第1页
2023学年河南省林州一中分校林虑中学高三下学期第六次检测数学试卷(含解析)_第2页
2023学年河南省林州一中分校林虑中学高三下学期第六次检测数学试卷(含解析)_第3页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023学年高考数学模拟测试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,设为内一点,且,则与的面积之比为A. B.C. D.2.已知函数,,若,对任意恒有,在区间上有且只有一个使,则的最大值为()A. B. C. D.3.若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数在上单调递增 B.函数的周期是C.函数的图象关于点对称 D.函数在上最大值是14.在中,角的对边分别为,若.则角的大小为()A. B. C. D.5.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的极差为60 B.7月份的利润最大C.这12个月利润的中位数与众数均为30 D.这一年的总利润超过400万元6.已知集合,,若AB,则实数的取值范围是()A. B. C. D.7.已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,,且,则该双曲线的渐近线方程为()A. B. C. D.8.过椭圆的左焦点的直线过的上顶点,且与椭圆相交于另一点,点在轴上的射影为,若,是坐标原点,则椭圆的离心率为()A. B. C. D.9.已知为圆:上任意一点,,若线段的垂直平分线交直线于点,则点的轨迹方程为()A. B.C.() D.()10.定义:表示不等式的解集中的整数解之和.若,,,则实数的取值范围是A. B. C. D.11.将函数f(x)=sin3x-cos3x+1的图象向左平移个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:①它的图象关于直线x=对称;②它的最小正周期为;③它的图象关于点(,1)对称;④它在[]上单调递增.其中所有正确结论的编号是()A.①② B.②③ C.①②④ D.②③④12.设集合则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.能说明“若对于任意的都成立,则在上是减函数”为假命题的一个函数是________.14.的三个内角A,B,C所对应的边分别为a,b,c,已知,则________.15.若关于的不等式在上恒成立,则的最大值为__________.16.已知向量,,若,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,,.(1)求的值;(2)求的值.18.(12分)已知函数.(1)若函数在上单调递减,求实数的取值范围;(2)若,求的最大值.19.(12分)我国在贵州省平塘县境内修建的500米口径球面射电望远镜(FAST)是目前世界上最大单口径射电望远镜.使用三年来,已发现132颗优质的脉冲星候选体,其中有93颗已被确认为新发现的脉冲星,脉冲星是上世纪60年代天文学的四大发现之一,脉冲星就是正在快速自转的中子星,每一颗脉冲星每两脉冲间隔时间(脉冲星的自转周期)是-定的,最小小到0.0014秒,最长的也不过11.765735秒.某-天文研究机构观测并统计了93颗已被确认为新发现的脉冲星的自转周期,绘制了如图的频率分布直方图.(1)在93颗新发现的脉冲星中,自转周期在2至10秒的大约有多少颗?(2)根据频率分布直方图,求新发现脉冲星自转周期的平均值.20.(12分)已知函数(为实常数).(1)讨论函数在上的单调性;(2)若存在,使得成立,求实数的取值范围.21.(12分)已知.(1)求不等式的解集;(2)记的最小值为,且正实数满足.证明:.22.(10分)如图,平面四边形为直角梯形,,,,将绕着翻折到.(1)为上一点,且,当平面时,求实数的值;(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】

作交于点,根据向量比例,利用三角形面积公式,得出与的比例,再由与的比例,可得到结果.【题目详解】如图,作交于点,则,由题意,,,且,所以又,所以,,即,所以本题答案为A.【答案点睛】本题考查三角函数与向量的结合,三角形面积公式,属基础题,作出合适的辅助线是本题的关键.2、C【答案解析】

根据的零点和最值点列方程组,求得的表达式(用表示),根据在上有且只有一个最大值,求得的取值范围,求得对应的取值范围,由为整数对的取值进行验证,由此求得的最大值.【题目详解】由题意知,则其中,.又在上有且只有一个最大值,所以,得,即,所以,又,因此.①当时,,此时取可使成立,当时,,所以当或时,都成立,舍去;②当时,,此时取可使成立,当时,,所以当或时,都成立,舍去;③当时,,此时取可使成立,当时,,所以当时,成立;综上所得的最大值为.故选:C【答案点睛】本小题主要考查三角函数的零点和最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.3、A【答案解析】

根据三角函数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,正确;关于点对称,错误;根据正弦型函数最小正周期的求解可知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.【题目详解】将横坐标缩短到原来的得:当时,在上单调递增在上单调递增,正确;的最小正周期为:不是的周期,错误;当时,,关于点对称,错误;当时,此时没有最大值,错误.本题正确选项:【答案点睛】本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,通过正弦函数的图象来判断出所求函数的性质.4、A【答案解析】

由正弦定理化简已知等式可得,结合,可得,结合范围,可得,可得,即可得解的值.【题目详解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故选A.【答案点睛】本题主要考查了正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.5、D【答案解析】

直接根据折线图依次判断每个选项得到答案.【题目详解】由图可知月收入的极差为,故选项A正确;1至12月份的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,7月份的利润最高,故选项B正确;易求得总利润为380万元,众数为30,中位数为30,故选项C正确,选项D错误.故选:.【答案点睛】本题考查了折线图,意在考查学生的理解能力和应用能力.6、D【答案解析】

先化简,再根据,且AB求解.【题目详解】因为,又因为,且AB,所以.故选:D【答案点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.7、D【答案解析】

根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程.【题目详解】如图所示:因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以渐近线方程为.故选:D.【答案点睛】本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半.8、D【答案解析】

求得点的坐标,由,得出,利用向量的坐标运算得出点的坐标,代入椭圆的方程,可得出关于、、的齐次等式,进而可求得椭圆的离心率.【题目详解】由题意可得、.由,得,则,即.而,所以,所以点.因为点在椭圆上,则,整理可得,所以,所以.即椭圆的离心率为故选:D.【答案点睛】本题考查椭圆离心率的求解,解答的关键就是要得出、、的齐次等式,充分利用点在椭圆上这一条件,围绕求点的坐标来求解,考查计算能力,属于中等题.9、B【答案解析】

如图所示:连接,根据垂直平分线知,,故轨迹为双曲线,计算得到答案.【题目详解】如图所示:连接,根据垂直平分线知,故,故轨迹为双曲线,,,,故,故轨迹方程为.故选:.【答案点睛】本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.10、D【答案解析】

由题意得,表示不等式的解集中整数解之和为6.当时,数形结合(如图)得的解集中的整数解有无数多个,解集中的整数解之和一定大于6.当时,,数形结合(如图),由解得.在内有3个整数解,为1,2,3,满足,所以符合题意.当时,作出函数和的图象,如图所示.若,即的整数解只有1,2,3.只需满足,即,解得,所以.综上,当时,实数的取值范围是.故选D.11、B【答案解析】

根据函数图象的平移变换公式求出函数的解析式,再利用正弦函数的对称性、单调区间等相关性质求解即可.【题目详解】因为f(x)=sin3x-cos3x+1=2sin(3x-)+1,由图象的平移变换公式知,函数g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期为,故②正确;令3x+=kπ+,得x=+(k∈Z),所以x=不是对称轴,故①错误;令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函数g(x)的图象关于点(,1)对称,故③正确;令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④错误;故选:B【答案点睛】本题考查图象的平移变换和正弦函数的对称性、单调性和最小正周期等性质;考查运算求解能力和整体代换思想;熟练掌握正弦函数的对称性、单调性和最小正周期等相关性质是求解本题的关键;属于中档题、常考题型12、C【答案解析】

直接求交集得到答案.【题目详解】集合,则.故选:.【答案点睛】本题考查了交集运算,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、答案不唯一,如【答案解析】

根据对基本函数的理解可得到满足条件的函数.【题目详解】由题意,不妨设,则在都成立,但是在是单调递增的,在是单调递减的,说明原命题是假命题.所以本题答案为,答案不唯一,符合条件即可.【答案点睛】本题考查对基本初等函数的图像和性质的理解,关键是假设出一个在上不是单调递减的函数,再检验是否满足命题中的条件,属基础题.14、【答案解析】

利用正弦定理边化角可得,从而可得,进而求解.【题目详解】由,由正弦定理可得,即,整理可得,又因为,所以,因为,所以,故答案为:【答案点睛】本题主要考查了正弦定理解三角形、两角和的正弦公式,属于基础题.15、【答案解析】

分类讨论,时不合题意;时求导,求出函数的单调区间,得到在上的最小值,利用不等式恒成立转化为函数最小值,化简得,构造放缩函数对自变量再研究,可解,【题目详解】令;当时,,不合题意;当时,,令,得或,所以在区间和上单调递减.因为,且在区间上单调递增,所以在处取极小值,即最小值为.若,,则,即.当时,,当时,则.设,则.当时,;当时,,所以在上单调递增;在上单调递减,所以,即,所以的最大值为.故答案为:【答案点睛】本题考查不等式恒成立问题.不等式恒成立问题的求解思路:已知不等式(为实参数)对任意的恒成立,求参数的取值范围.利用导数解决此类问题可以运用分离参数法;如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(,或,)求解.16、10【答案解析】

根据垂直得到,代入计算得到答案.【题目详解】,则,解得,故,故.故答案为:.【答案点睛】本题考查了根据向量垂直求参数,向量模,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【答案解析】

(1)先利用同角的三角函数关系解得和,再由,利用正弦的差角公式求解即可;(2)由(1)可得和,利用余弦的二倍角公式求得,再由正切的和角公式求解即可.【题目详解】解:(1)因为,所以又,故,所以,所以(2)由(1)得,,,所以,所以,因为且,即,解得,因为,所以,所以,所以,所以【答案点睛】本题考查已知三角函数值求值,考查三角函数的化简,考查和角公式,二倍角公式,同角的三角函数关系的应用,考查运算能力.18、(1)(2)【答案解析】

(1)根据单调递减可知导函数恒小于等于,采用参变分离的方法分离出,并将的部分构造成新函数,分析与最值之间的关系;(2)通过对的导函数分析,确定有唯一零点,则就是的极大值点也是最大值点,计算的值并利用进行化简,从而确定.【题目详解】(1)由题意知,在上恒成立,所以在上恒成立.令,则,所以在上单调递增,所以,所以.(2)当时,.则,令,则,所以在上单调递减.由于,,所以存在满足,即.当时,,;当时,,.所以在上单调递增,在上单调递减.所以,因为,所以,所以,所以.【答案点睛】(1)求函数中字母的范围时,常用的方法有两种:参变分离法、分类讨论法;(2)当导函数不易求零点时,需要将导函数中某些部分拿出作单独分析,以便先确定导函数的单调性从而确定导函数的零点所在区间,再分析整个函数的单调性,最后确定出函数的最值.19、(1)79颗;(2)5.5秒.【答案解析】

(1)利用各小矩形的面积和为1可得,进而得到脉冲星自转周期在2至10秒的频率,从而得到频数;(2)平均值的估计值为各小矩形组中值与频率的乘积的和得到.【题目详解】(1)第一到第六组的频率依次为0.1,0.2,0.3,0.2,,0.05,其和为1所以,,所以,自转周期在2至10秒的大约有(颗).(2)新发现的脉冲星自转周期平均值为(秒).故新发现的脉冲星自转周期平均值为5.5秒.【答案点睛】本题考查频率分布直方图的应用,涉及到平均数的估计值等知识,是一道容易题.20、(1)见解析(2)【答案解析】

(1)分类讨论的值,利用导数证明单调性即可;(2)利用导数分别得出,,时,的最小值,即可得出实数的取值范围.【题目详解】(1),.当即时,,,此时,在上单调递增;当即时,时,,在上单调递减;时,,在上单调递增;当即时,,,此时,在上单调递减;(2)当时,因为在上单调递增,所以的最小值为,所以当时,在上单调递减,在上单调递增所以的最小值为.因为,所以,.所以,所以.当时,在上单调递减所以的最小值为因为,所以,所以,综上,.【答案点睛】本题主要考查了利用导数证明函数的单调性以及利用导数研究函数的存在性问题,属于中档题.21、(1)或;(2)见解析【答案解析】

(1)根据,利用零点分段法解不等式,或作出函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论