



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在上单调递增,则实数的取值范围是()A. B. C. D.2.若命题p:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题q:在边长为4的正方形ABCD内任取一点M,则∠AMB>90°的概率为π8A.p∧qB.(¬p)∧qC.p∧(¬q)D.¬q3.记其中表示不大于x的最大整数,若方程在在有7个不同的实数根,则实数k的取值范围()A. B. C. D.4.已知双曲线x2a2-y2b2=1(a>0,b>0),其右焦点F的坐标为(c,0),点A是第一象限内双曲线渐近线上的一点,O为坐标原点,满足|OA|=A.2 B.2 C.2335.2019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为()且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则()A. B. C. D.6.国务院发布《关于进一步调整优化结构、提高教育经费使用效益的意见》中提出,要优先落实教育投入.某研究机构统计了年至年国家财政性教育经费投入情况及其在中的占比数据,并将其绘制成下表,由下表可知下列叙述错误的是()A.随着文化教育重视程度的不断提高,国在财政性教育经费的支出持续增长B.年以来,国家财政性教育经费的支出占比例持续年保持在以上C.从年至年,中国的总值最少增加万亿D.从年到年,国家财政性教育经费的支出增长最多的年份是年7.已知的内角的对边分别是且,若为最大边,则的取值范围是()A. B. C. D.8.若(1+2ai)i=1-bi,其中a,b∈R,则|a+bi|=().A. B. C. D.59.在平面直角坐标系中,已知是圆上两个动点,且满足,设到直线的距离之和的最大值为,若数列的前项和恒成立,则实数的取值范围是()A. B. C. D.10.已知双曲线:,,为其左、右焦点,直线过右焦点,与双曲线的右支交于,两点,且点在轴上方,若,则直线的斜率为()A. B. C. D.11.已知直线:与圆:交于,两点,与平行的直线与圆交于,两点,且与的面积相等,给出下列直线:①,②,③,④.其中满足条件的所有直线的编号有()A.①② B.①④ C.②③ D.①②④12.已知函数,将函数的图象向左平移个单位长度,得到函数的图象,若函数的图象的一条对称轴是,则的最小值为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某部门全部员工参加一项社会公益活动,按年龄分为三组,其人数之比为,现用分层抽样的方法从总体中抽取一个容量为20的样本,若组中甲、乙二人均被抽到的概率是,则该部门员工总人数为__________.14.数列满足递推公式,且,则___________.15.若函数为自然对数的底数)在和两处取得极值,且,则实数的取值范围是______.16.已知函数,则曲线在点处的切线方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在锐角中,角A,B,C所对的边分别为a,b,c.已知.(1)求的值;(2)当,且时,求的面积.18.(12分)如图,在平面四边形中,,,.(1)求;(2)求四边形面积的最大值.19.(12分)在中,内角的边长分别为,且.(1)若,,求的值;(2)若,且的面积,求和的值.20.(12分)已知关于的不等式有解.(1)求实数的最大值;(2)若,,均为正实数,且满足.证明:.21.(12分)△ABC的内角的对边分别为,已知△ABC的面积为(1)求;(2)若求△ABC的周长.22.(10分)某健身馆为响应十九届四中全会提出的“聚焦增强人民体质,健全促进全民健身制度性举措”,提高广大市民对全民健身运动的参与程度,推出了健身促销活动,收费标准如下:健身时间不超过1小时免费,超过1小时的部分每小时收费标准为20元(不足l小时的部分按1小时计算).现有甲、乙两人各自独立地来该健身馆健身,设甲、乙健身时间不超过1小时的概率分别为,,健身时间1小时以上且不超过2小时的概率分别为,,且两人健身时间都不会超过3小时.(1)设甲、乙两人所付的健身费用之和为随机变量(单位:元),求的分布列与数学期望;(2)此促销活动推出后,健身馆预计每天约有300人来参与健身活动,以这两人健身费用之和的数学期望为依据,预测此次促销活动后健身馆每天的营业额.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】
对分类讨论,当,函数在单调递减,当,根据对勾函数的性质,求出单调递增区间,即可求解.【题目详解】当时,函数在上单调递减,所以,的递增区间是,所以,即.故选:B.【答案点睛】本题考查函数单调性,熟练掌握简单初等函数性质是解题关键,属于基础题.2、B【答案解析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为P1=1C42=16,即命题p是错误,则¬p是正确的;在边长为4的正方形ABCD内任取一点M点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词)的命题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运用,以及分析问题解决问题的能力。3、D【答案解析】
做出函数的图象,问题转化为函数的图象在有7个交点,而函数在上有3个交点,则在上有4个不同的交点,数形结合即可求解.【题目详解】作出函数的图象如图所示,由图可知方程在上有3个不同的实数根,则在上有4个不同的实数根,当直线经过时,;当直线经过时,,可知当时,直线与的图象在上有4个交点,即方程,在上有4个不同的实数根.故选:D.【答案点睛】本题考查方程根的个数求参数,利用函数零点和方程之间的关系转化为两个函数的交点是解题的关键,运用数形结合是解决函数零点问题的基本思想,属于中档题.4、C【答案解析】
计算得到Ac,bca【题目详解】双曲线的一条渐近线方程为y=bax,A故Ac,bca,Fc,0,故Mc,故选:C.【答案点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.5、A【答案解析】
根据题意分别求出事件A:检测5个人确定为“感染高危户”发生的概率和事件B:检测6个人确定为“感染高危户”发生的概率,即可得出的表达式,再根据基本不等式即可求出.【题目详解】设事件A:检测5个人确定为“感染高危户”,事件B:检测6个人确定为“感染高危户”,∴,.即设,则∴当且仅当即时取等号,即.故选:A.【答案点睛】本题主要考查概率的计算,涉及相互独立事件同时发生的概率公式的应用,互斥事件概率加法公式的应用,以及基本不等式的应用,解题关键是对题意的理解和事件的分解,意在考查学生的数学运算能力和数学建模能力,属于较难题.6、C【答案解析】
观察图表,判断四个选项是否正确.【题目详解】由表易知、、项均正确,年中国为万亿元,年中国为万亿元,则从年至年,中国的总值大约增加万亿,故C项错误.【答案点睛】本题考查统计图表,正确认识图表是解题基础.7、C【答案解析】
由,化简得到的值,根据余弦定理和基本不等式,即可求解.【题目详解】由,可得,可得,通分得,整理得,所以,因为为三角形的最大角,所以,又由余弦定理,当且仅当时,等号成立,所以,即,又由,所以的取值范围是.故选:C.【答案点睛】本题主要考查了代数式的化简,余弦定理,以及基本不等式的综合应用,试题难度较大,属于中档试题,着重考查了推理与运算能力.8、C【答案解析】试题分析:由已知,-2a+i=1-bi,根据复数相等的充要条件,有a=-,b=-1所以|a+bi|=,选C考点:复数的代数运算,复数相等的充要条件,复数的模9、B【答案解析】
由于到直线的距离和等于中点到此直线距离的二倍,所以只需求中点到此直线距离的最大值即可。再得到中点的轨迹是圆,再通过此圆的圆心到直线距离,半径和中点到此直线距离的最大值的关系可以求出。再通过裂项的方法求的前项和,即可通过不等式来求解的取值范围.【题目详解】由,得,.设线段的中点,则,在圆上,到直线的距离之和等于点到该直线的距离的两倍,点到直线距离的最大值为圆心到直线的距离与圆的半径之和,而圆的圆心到直线的距离为,,,..故选:【答案点睛】本题考查了向量数量积,点到直线的距离,数列求和等知识,是一道不错的综合题.10、D【答案解析】
由|AF2|=3|BF2|,可得.设直线l的方程x=my+,m>0,设,,即y1=﹣3y2①,联立直线l与曲线C,得y1+y2=-②,y1y2=③,求出m的值即可求出直线的斜率.【题目详解】双曲线C:,F1,F2为左、右焦点,则F2(,0),设直线l的方程x=my+,m>0,∵双曲线的渐近线方程为x=±2y,∴m≠±2,设A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,联立①②得,联立①③得,,即:,,解得:,直线的斜率为,故选D.【答案点睛】本题考查直线与双曲线的位置关系,考查韦达定理的运用,考查向量知识,属于中档题.11、D【答案解析】
求出圆心到直线的距离为:,得出,根据条件得出到直线的距离或时满足条件,即可得出答案.【题目详解】解:由已知可得:圆:的圆心为(0,0),半径为2,则圆心到直线的距离为:,∴,而,与的面积相等,∴或,即到直线的距离或时满足条件,根据点到直线距离可知,①②④满足条件.故选:D.【答案点睛】本题考查直线与圆的位置关系的应用,涉及点到直线的距离公式.12、C【答案解析】
将函数的图象向左平移个单位长度,得到函数的图象,因为函数的图象的一条对称轴是,所以,即,所以,又,所以的最小值为.故选C.二、填空题:本题共4小题,每小题5分,共20分。13、60【答案解析】
根据样本容量及各组人数比,可求得C组中的人数;由组中甲、乙二人均被抽到的概率是可求得C组的总人数,即可由各组人数比求得总人数.【题目详解】三组人数之比为,现用分层抽样的方法从总体中抽取一个容量为20的样本,则三组抽取人数分别.设组有人,则组中甲、乙二人均被抽到的概率,∴解得.∴该部门员工总共有人.故答案为:60.【答案点睛】本题考查了分层抽样的定义与简单应用,古典概型概率的简单应用,由各层人数求总人数的应用,属于基础题.14、2020【答案解析】
可对左右两端同乘以得,依次写出,,,,累加可得,再由得,代入即可求解【题目详解】左右两端同乘以有,从而,,,,将以上式子累加得.由得.令,有.故答案为:2020【答案点睛】本题考查数列递推式和累加法的应用,属于基础题15、【答案解析】
先将函数在和两处取得极值,转化为方程有两不等实根,且,再令,将问题转化为直线与曲线有两交点,且横坐标满足,用导数方法研究单调性,作出简图,求出时,的值,进而可得出结果.【题目详解】因为,所以,又函数在和两处取得极值,所以是方程的两不等实根,且,即有两不等实根,且,令,则直线与曲线有两交点,且交点横坐标满足,又,由得,所以,当时,,即函数在上单调递增;当,时,,即函数在和上单调递减;当时,由得,此时,因此,由得.故答案为【答案点睛】本题主要考查导数的应用,已知函数极值点间的关系求参数的问题,通常需要将函数极值点,转化为导函数对应方程的根,再转化为直线与曲线交点的问题来处理,属于常考题型.16、【答案解析】
根据导数的几何意义求出切线的斜率,利用点斜式求切线方程.【题目详解】因为,所以,又故切线方程为,整理为,故答案为:【答案点睛】本题主要考查了导数的几何意义,切线方程,属于容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【答案解析】
(1)利用二倍角公式求解即可,注意隐含条件.(2)利用(1)中的结论,结合正弦定理和同角三角函数的关系易得的值,又由求出的值,最后由正弦定理求出的值,根据三角形的面积公式即可计算得出.【题目详解】(1)由已知可得,所以,因为在锐角中,,所以(2)因为,所以,因为是锐角三角形,所以,所以.由正弦定理可得:,所以,所以【答案点睛】此类问题是高考的常考题型,主要考查了正弦定理、三角函数以及三角恒等变换等知识,同时考查了学生的基本运算能力和利用三角公式进行恒等变换的技能,属于中档题.18、(1);(2)【答案解析】
(1)根据同角三角函数式可求得,结合正弦和角公式求得,即可求得,进而由三角函数(2)设根据余弦定理及基本不等式,可求得的最大值,结合三角形面积公式可求得的最大值,即可求得四边形面积的最大值.【题目详解】(1),则由同角三角函数关系式可得,则,则,所以.(2)设在中由余弦定理可得,代入可得,由基本不等式可知,即,当且仅当时取等号,由三角形面积公式可得,所以四边形面积的最大值为.【答案点睛】本题考查了正弦和角公式化简三角函数式的应用,余弦定理及不等式式求最值的综合应用,属于中档题.19、(1);(2).【答案解析】
(1)先由余弦定理求得,再由正弦定理计算即可得到所求值;
(2)运用二倍角的余弦公式和两角和的正弦公式,化简可得sinA+sinB=5sinC,运用正弦定理和三角形的面积公式可得a,b的方程组,解方程即可得到所求值.【题目详解】解:(1)由余弦定理由正弦定理得(2)由已知得:所以------①又所以------②由①②解得【答案点睛】本题考查正弦定理、余弦定理和面积公式的运用,以及三角函数的恒等变换,考查化简整理的运算能力,属于中档题.20、(1);(2)见解析【答案解析】
(1)由题意,只需找到的最大值即可;(2),构造并利用基本不等式可得,即.【题目详解】(1),∴的最大值为4.关于的不等式有解等价于,(ⅰ)当时,上述不等式转化为,解得,(ⅱ)当时,上述不等式转化为,解得,综上所述,实数的取值范围为,则实数的最大值为3,即.(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南宁武鸣沃柑根系与根际真菌群落组成的多样性及对柑橘黄龙病抑制的研究
- 基于项目式学习的初中化学跨学科教学设计与实践研究
- 穴位注射配合针刀处理激痛点治疗神经根型颈椎病的疗效观察
- 小学语文二年级上册实践活动计划
- 企业员工健康安全演练计划
- 新北师大版小学数学五年级上册教学策略计划
- 语言文字工作在医疗行业中的职责探讨
- 土建施工技术交底全流程
- 化妆品供应链交货时间与质量措施
- 2024年度安徽省护师类之社区护理主管护师全真模拟考试试卷A卷含答案
- 2025年军队文职(司机类)核心知识点备考题库(含答案)
- 2025年深圳二模考试试题及答案
- (一模)临沂市2025届高三高考第一次模拟考试生物试卷(含标准答案)
- 老年康体指导职业教育课件
- 微训练 一文多考 备考高效之诗歌《临安春雨初霁》陆游 - 教师版
- 新疆乌鲁木齐市米东区2024-2025学年九年级上学期期中数学试卷(含答案)
- 课件:《科学社会主义概论(第二版)》第一章
- 国际关系理论知到智慧树章节测试课后答案2024年秋外交学院
- 第一章整式的乘法单元(教学设计)-七年级数学下册同步备课系列(湘教版2024)
- 中考物理复习欧姆定律复习讲解学习
- 上海市2024年中考英语试题及答案
评论
0/150
提交评论