![电磁场的能量课件_第1页](http://file4.renrendoc.com/view/2170140e38de771a74f14755d086321e/2170140e38de771a74f14755d086321e1.gif)
![电磁场的能量课件_第2页](http://file4.renrendoc.com/view/2170140e38de771a74f14755d086321e/2170140e38de771a74f14755d086321e2.gif)
![电磁场的能量课件_第3页](http://file4.renrendoc.com/view/2170140e38de771a74f14755d086321e/2170140e38de771a74f14755d086321e3.gif)
![电磁场的能量课件_第4页](http://file4.renrendoc.com/view/2170140e38de771a74f14755d086321e/2170140e38de771a74f14755d086321e4.gif)
![电磁场的能量课件_第5页](http://file4.renrendoc.com/view/2170140e38de771a74f14755d086321e/2170140e38de771a74f14755d086321e5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
电磁场的能量电磁场的能量问题一:为什么说电磁场具有能量?
电场对位于场域中电荷有作用力,磁场对位于场域中电流有作用力,说明电磁场具有能量。问题二:电磁场能量来源于何处?
建立电磁场的过程中,外源做功转换为电磁场能量。问题三:电磁场能量分布于何处?
只要电、磁场不为零的空间,均存在电磁能量分布。问题一:为什么说电磁场具有能量?电场对位于场域中电荷在某一时刻:电荷分布为、电位分布为。一、静电场的能量
静电场能量来源于建立电荷系统的过程中外源提供的能量。1、分布电荷静电场能量
设系统从零开始充电,最终的电荷分布为ρ、电位为。电荷增加系数为当α
增加为体积元dV中增加电荷外电源所做的功转换为电场能量We
,即外电源所做的总功外电源对dV做功为:在某一时刻:电荷分布为、电位分布为一、静电场的能量2、多点电荷静电场能量对N个点电荷组成的系统,电荷体密度为利用函数的选择性点电荷相互作用能式中为其他电荷在i电荷位置处产生电位,不含i电荷在自身处产生电位多点电荷静电场能量:一、静电场的能量2、多点电荷静电场能量对N个点电荷组成的系统一、静电场的能量3、多带电导体系统静电场能量N个带电导体组成的系统的总电场能量为:式中为所有带电导体(含i导体)在i导体处产生电位——多带电导体系统静电场能量
导体带电时,电荷均分布于导体表面——面电荷。i导体电荷面密度i导体电荷电位一、静电场的能量3、多带电导体系统静电场能量N个带电导体组成
能量是分布在有电场存在的整个空间,并非仅仅存在于有电荷分布的区域,所以被积函数
不表示能量密度关于静电场能量表达式的说明
讨论的是充电完成系统稳定后的情况,所以只适用于静电场
积分区域为存在电荷分布的空间,由于在无电荷分布的区域积分为零,所以积分也可以为整个空间一、静电场的能量能量是分布在有电场存在的整个空间,并非仅仅存在于有电关一、静电场的能量4、电场能量密度
电场能量密度:
电场总能量:积分区域为电场所在的整个空间
对于线性、各向同性介质,有:推证一、静电场的能量4、电场能量密度电场能量密度:电场总能量考查第一项:在上式中,为整个空间,即S为包围整个空间的闭合面,电场能量密度式中:为整个电场空间电场能量密度公式推导:考查第一项:在上式中,为整个空间,即S为包围整个空间的闭合二、恒定磁场的能量
恒定磁场能量来源于建立电流过程中外源提供的能量。恒定磁场建立过程中,电源克服感应电动势做功所供给能量,全部转化成磁场能量。1、体电流的磁场能量
若电流为体电流分布,则其在空间中产生的磁能为:
式中:为体电流在dV处产生的磁位。
V为整个空间。上式只适用于恒定磁场被积函数不代表能量密度二、恒定磁场的能量恒定磁场能量来源于建立电流过程中外源提二、恒定磁场的能量2、多电流回路系统的磁场能量N个回路系统,i回路自感为,i回路与j回路间互感为,i回路电流为,则磁回路系统的磁场能量为:
若回路为单回路系统,则
若回路为双回路系统,则关于电流回路系统磁场能量的讨论二、恒定磁场的能量2、多电流回路系统的磁场能量N个回二、恒定磁场的能量3、磁场能量密度磁场能量密度:磁场能量:对于线性、各向同性媒质,则有积分区域为电场所在的整个空间推证二、恒定磁场的能量3、磁场能量密度磁场能量密度:磁场能量三、电磁能量及电磁能量守恒定律N个回路系统,i回路自感为,i回路与j回路间互感为,i回路电流为,则磁回路系统的磁场能量为:【例2】求同轴线单位长度内储存的磁场能量。N个回路系统,i回路自感为,i回路与j回路间互感为,i回路电流为,则磁回路系统的磁场能量为:三、电磁能量及电磁能量守恒定律瞬时坡印廷矢量反映某时刻的电磁能量流动情况。(续前)(b)要使场存在,则场量须满足麦克斯韦方程组平均坡印廷矢量:将瞬时形式坡印廷矢量在一个周期内取平均。1、分布电荷静电场能量根据高斯定理求得电场强度2、坡印廷定理——电磁能量守恒定律V为整个空间。得:磁能密度为磁场能量密度公式推导:三、电磁能量及电磁能量守恒定律得:磁能密度为磁场能量密度公式三、电磁能量及电磁能量守恒定律1、电磁能量
电磁能量密度:单位体积中电磁场的能量。为电场能量和磁场能量之和。
电场能量密度:
磁场能量密度:
电磁场能量密度:
体积V内总能量:三、电磁能量及电磁能量守恒定律1、电磁能量电磁能量密度进入体积V的能量=体积V内增加的能量+体积V内损耗的能量问题:数学表示?2、坡印廷定理——电磁能量守恒定律三、电磁能量及电磁能量守恒定律坡印廷定理描述了有限区域内的电磁能量守恒关系。进入体积V的能量=体积V内增加的能量+体积V内损耗的能量问题2、坡印廷定理——电磁能量守恒定律三、电磁能量及电磁能量守恒定律
区域V内电磁场能量密度:
单位体积中电磁场的能量,为电场能量和磁场能量之和。
体积V内总能量:启示:围绕体积内储能随时间的变化来描述能量关系2、坡印廷定理——电磁能量守恒定律三、电磁能量及电磁能量守恒三、电磁能量及电磁能量守恒定律2、坡印廷定理——电磁能量守恒定律坡印廷定理积分形式:体积V内增加的电磁功率体积V内损耗的电磁功率流入体积V的电磁功率(新物理量)
坡印廷定理物理意义:单位时间内流入体积V内的电磁能量等于体积V内增加的电磁能量与体积V内损耗的电磁能量之和。坡印廷定理微分形式:推证三、电磁能量及电磁能量守恒定律2、坡印廷定理——电磁能量守恒坡印廷定理推导:——坡印廷定理微分形式两式相减,得三、电磁能量及电磁能量守恒定律2、坡印廷定理——电磁能量守恒定律坡印廷定理推导:——坡印廷定理微分形式两式相减,得三、电磁能三、电磁能量及电磁能量守恒定律3、坡印廷矢量重要概念:坡印廷矢量——流入体积V的电磁功率物理含义:通过垂直于能量传输方向单位面积的电磁功率(功率流密度)。坡印廷矢量定义:坡印廷矢量描述了时变电磁场中电磁能量传输(流动)的特性注:上式与时间有关,故也称瞬时坡印廷矢量。三、电磁能量及电磁能量守恒定律3、坡印廷矢量重要概念:坡印廷三、电磁能量及电磁能量守恒定律3、坡印廷矢量平均坡应廷矢量
瞬时坡印廷矢量反映某时刻的电磁能量流动情况。平均坡印廷矢量反映一个时间周期内的电磁能量传递情况。
平均坡印廷矢量:将瞬时形式坡印廷矢量在一个周期内取平均。注:与时间t无关。三、电磁能量及电磁能量守恒定律3、坡印廷矢量平均坡应廷矢量四、典型例题【例1】
半径为a的球形空间内均匀分布有电荷体密度为ρ的电荷,试求总静电场能量(球内外介质均为真空)。解法一:利用计算
根据高斯定理求得电场强度故四、典型例题【例1】半径为a的球形空间内均匀分布有电荷四、典型例题(续前)解法二:利用计算
故
根据高斯定理求得电场强度四、典型例题(续前)解法二:利用计算【例2】
求同轴线单位长度内储存的磁场能量。解:如图所示,同轴线的内导体半径为a,
外导体的内半径为b,外导体的外半径为c。
内、外导体之间填充的介质以及导体的磁导率均为,设电流为
I,根据安培环路定律求出磁场分布
四、典型例题由此即可求出三个区域单位长度内的磁场能量分别为【例2】求同轴线单位长度内储存的磁场能量。解:如图所示,同轴线单位长度储存的总磁场能量为四、典型例题(续前)同轴线单位长度储存的总磁场能量为四、典型例题(续前)【例3】
已知无源区域的场为。求(a)磁场强度,(b)场存在的必要条件,(c)单位面积的瞬时功率流和平均功率流。解:(a)电场为:,用求场。由,得四、典型例题【例3】已知无源区域的场为。求(a)磁场强度,(b)场(续前)(b)要使场存在,则场量须满足麦克斯韦方程组易推得:四、典型例题——场存在的必要条件(续前)(b)要使场存在,则场量须满足麦克斯韦方程组易推(续前)(c)坡印廷矢量四、典型例题平均坡印廷矢量(续前)(c)坡印廷矢量四、典型例题平均坡印廷矢量课堂练习
已知无源区域存在时变电磁场,其电场矢量为求垂直于传播方向上单位面积内的功率流及平均功率流。课堂练习已知无源区域存在时变电磁场,其电场矢量为求垂直于作业3.83.9作业3.83.9电磁场的能量电磁场的能量问题一:为什么说电磁场具有能量?
电场对位于场域中电荷有作用力,磁场对位于场域中电流有作用力,说明电磁场具有能量。问题二:电磁场能量来源于何处?
建立电磁场的过程中,外源做功转换为电磁场能量。问题三:电磁场能量分布于何处?
只要电、磁场不为零的空间,均存在电磁能量分布。问题一:为什么说电磁场具有能量?电场对位于场域中电荷在某一时刻:电荷分布为、电位分布为。一、静电场的能量
静电场能量来源于建立电荷系统的过程中外源提供的能量。1、分布电荷静电场能量
设系统从零开始充电,最终的电荷分布为ρ、电位为。电荷增加系数为当α
增加为体积元dV中增加电荷外电源所做的功转换为电场能量We
,即外电源所做的总功外电源对dV做功为:在某一时刻:电荷分布为、电位分布为一、静电场的能量2、多点电荷静电场能量对N个点电荷组成的系统,电荷体密度为利用函数的选择性点电荷相互作用能式中为其他电荷在i电荷位置处产生电位,不含i电荷在自身处产生电位多点电荷静电场能量:一、静电场的能量2、多点电荷静电场能量对N个点电荷组成的系统一、静电场的能量3、多带电导体系统静电场能量N个带电导体组成的系统的总电场能量为:式中为所有带电导体(含i导体)在i导体处产生电位——多带电导体系统静电场能量
导体带电时,电荷均分布于导体表面——面电荷。i导体电荷面密度i导体电荷电位一、静电场的能量3、多带电导体系统静电场能量N个带电导体组成
能量是分布在有电场存在的整个空间,并非仅仅存在于有电荷分布的区域,所以被积函数
不表示能量密度关于静电场能量表达式的说明
讨论的是充电完成系统稳定后的情况,所以只适用于静电场
积分区域为存在电荷分布的空间,由于在无电荷分布的区域积分为零,所以积分也可以为整个空间一、静电场的能量能量是分布在有电场存在的整个空间,并非仅仅存在于有电关一、静电场的能量4、电场能量密度
电场能量密度:
电场总能量:积分区域为电场所在的整个空间
对于线性、各向同性介质,有:推证一、静电场的能量4、电场能量密度电场能量密度:电场总能量考查第一项:在上式中,为整个空间,即S为包围整个空间的闭合面,电场能量密度式中:为整个电场空间电场能量密度公式推导:考查第一项:在上式中,为整个空间,即S为包围整个空间的闭合二、恒定磁场的能量
恒定磁场能量来源于建立电流过程中外源提供的能量。恒定磁场建立过程中,电源克服感应电动势做功所供给能量,全部转化成磁场能量。1、体电流的磁场能量
若电流为体电流分布,则其在空间中产生的磁能为:
式中:为体电流在dV处产生的磁位。
V为整个空间。上式只适用于恒定磁场被积函数不代表能量密度二、恒定磁场的能量恒定磁场能量来源于建立电流过程中外源提二、恒定磁场的能量2、多电流回路系统的磁场能量N个回路系统,i回路自感为,i回路与j回路间互感为,i回路电流为,则磁回路系统的磁场能量为:
若回路为单回路系统,则
若回路为双回路系统,则关于电流回路系统磁场能量的讨论二、恒定磁场的能量2、多电流回路系统的磁场能量N个回二、恒定磁场的能量3、磁场能量密度磁场能量密度:磁场能量:对于线性、各向同性媒质,则有积分区域为电场所在的整个空间推证二、恒定磁场的能量3、磁场能量密度磁场能量密度:磁场能量三、电磁能量及电磁能量守恒定律N个回路系统,i回路自感为,i回路与j回路间互感为,i回路电流为,则磁回路系统的磁场能量为:【例2】求同轴线单位长度内储存的磁场能量。N个回路系统,i回路自感为,i回路与j回路间互感为,i回路电流为,则磁回路系统的磁场能量为:三、电磁能量及电磁能量守恒定律瞬时坡印廷矢量反映某时刻的电磁能量流动情况。(续前)(b)要使场存在,则场量须满足麦克斯韦方程组平均坡印廷矢量:将瞬时形式坡印廷矢量在一个周期内取平均。1、分布电荷静电场能量根据高斯定理求得电场强度2、坡印廷定理——电磁能量守恒定律V为整个空间。得:磁能密度为磁场能量密度公式推导:三、电磁能量及电磁能量守恒定律得:磁能密度为磁场能量密度公式三、电磁能量及电磁能量守恒定律1、电磁能量
电磁能量密度:单位体积中电磁场的能量。为电场能量和磁场能量之和。
电场能量密度:
磁场能量密度:
电磁场能量密度:
体积V内总能量:三、电磁能量及电磁能量守恒定律1、电磁能量电磁能量密度进入体积V的能量=体积V内增加的能量+体积V内损耗的能量问题:数学表示?2、坡印廷定理——电磁能量守恒定律三、电磁能量及电磁能量守恒定律坡印廷定理描述了有限区域内的电磁能量守恒关系。进入体积V的能量=体积V内增加的能量+体积V内损耗的能量问题2、坡印廷定理——电磁能量守恒定律三、电磁能量及电磁能量守恒定律
区域V内电磁场能量密度:
单位体积中电磁场的能量,为电场能量和磁场能量之和。
体积V内总能量:启示:围绕体积内储能随时间的变化来描述能量关系2、坡印廷定理——电磁能量守恒定律三、电磁能量及电磁能量守恒三、电磁能量及电磁能量守恒定律2、坡印廷定理——电磁能量守恒定律坡印廷定理积分形式:体积V内增加的电磁功率体积V内损耗的电磁功率流入体积V的电磁功率(新物理量)
坡印廷定理物理意义:单位时间内流入体积V内的电磁能量等于体积V内增加的电磁能量与体积V内损耗的电磁能量之和。坡印廷定理微分形式:推证三、电磁能量及电磁能量守恒定律2、坡印廷定理——电磁能量守恒坡印廷定理推导:——坡印廷定理微分形式两式相减,得三、电磁能量及电磁能量守恒定律2、坡印廷定理——电磁能量守恒定律坡印廷定理推导:——坡印廷定理微分形式两式相减,得三、电磁能三、电磁能量及电磁能量守恒定律3、坡印廷矢量重要概念:坡印廷矢量——流入体积V的电磁功率物理含义:通过垂直于能量传输方向单位面积的电磁功率(功率流密度)。坡印廷矢量定义:坡印廷矢量描述了时变电磁场中电磁能量传输(流动)的特性注:上式与时间有关,故也称瞬时坡印廷矢量。三、电磁能量及电磁能量守恒定律3、坡印廷矢量重要概念:坡印廷三、电磁能量及电磁能量守恒定律3、坡印廷矢量平均坡应廷矢量
瞬时坡印廷矢量反映某时刻的电磁能量流动情况。平均坡印廷矢量反映一个时间周期内的电磁能量传递情况。
平均坡印廷矢量:将瞬时形式坡印廷矢量在一个周期内取平均。注:与时间t无关。三、电磁能量及电磁能量守恒定律3、坡印廷矢量平均坡应廷矢量四、典型例题【例1】
半径为a的球形空间内均匀分布有电荷体密度为ρ的电荷,试求总静电场能量(球内外介质均为真空)。解法一:利用计算
根据高斯定理求得电场强度故四、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机电设备销售员工工作总结
- 2025-2030全球无线智能振动监测传感器行业调研及趋势分析报告
- 2025-2030全球FinFET 3D晶体管行业调研及趋势分析报告
- 2025-2030全球无人潜水器用于海上石油和天然气行业行业调研及趋势分析报告
- 2025-2030全球手机支付安全行业调研及趋势分析报告
- 2025年全球及中国纳米粒度及Zeta电位分析仪行业头部企业市场占有率及排名调研报告
- 2025-2030全球高效粘泥剥离剂行业调研及趋势分析报告
- 2025区域代理合同模板范本
- 供水工程承包合同
- 音响设备购销合同范本
- 输变电工程监督检查标准化清单-质监站检查
- 2024-2025学年北京海淀区高二(上)期末生物试卷(含答案)
- 【超星学习通】马克思主义基本原理(南开大学)尔雅章节测试网课答案
- 2024年中国工业涂料行业发展现状、市场前景、投资方向分析报告(智研咨询发布)
- 化工企业重大事故隐患判定标准培训考试卷(后附答案)
- 工伤赔偿授权委托书范例
- 食堂餐具炊具供货服务方案
- 员工安全健康手册
- 2024化工园区危险品运输车辆停车场建设规范
- 自然科学基础(小学教育专业)全套教学课件
- 华为客服制度
评论
0/150
提交评论