高考数学专题《等差数列及其前n项和》练习_第1页
高考数学专题《等差数列及其前n项和》练习_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题7.2等差数列及其前n项和练基础练基础1.(2021·全国高三其他模拟(文))在等差数列中,已知,则公差()A.1 B.2 C.-2 D.-12.(2020·湖北武汉�高三其他(文))设等差数列的前项和为,若,,则公差等于()A.0 B.1 C. D.3.(2020·全国高三其他(理))已知为等差数列的前项和,若,则()A.12 B.15 C.18 D.214.(2019·浙江高三会考)等差数列ann∈N*的公差为d,前n项和为Sn,若a1>0,dA.4B.5C.6D.75.(2021·全国高三其他模拟(文))我国明代数学家程大位的《算法统宗》中有这样一个问题:今有钞二百三十八贯,令五等人从上作互和减半分之,只云戊不及甲三十三贯六百文,问:各该钞若干?其意思是:现有钱238贯,采用等差数列的方法依次分给甲、乙、丙、丁、戊五个人,现在只知道戊所得钱比甲少33贯600文(1贯=1000文),问各人各得钱多少?在这个问题中,戊所得钱数为()A.30.8贯 B.39.2贯 C.47.6贯 D.64.4贯6.(2020·全国高三课时练习(理))设等差数列{an}的前n项和为Sn,且满足S15>0,S16<0,则,,…,中最大的项为()A.B.C.D.7.(2019·全国高考真题(文))记为等差数列的前项和,若,则___________.8.(2019·全国高考真题(理))记Sn为等差数列{an}的前n项和,,则___________.9.(2021·河南高三其他模拟(文))设Sn是等差数列{an}的前n项和,若S4=2S3-2,2a5-a6=7,则S8=___________.10.(2018·全国高考真题(理))记Sn为等差数列{an}的前n项和,已知(1)求{a(2)求Sn,并求S练提升练提升TIDHNEG1.(2021·上海市大同中学高三三模)已知数列满足,若,则“数列为无穷数列”是“数列单调”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.(2021·哈尔滨市第一中学校高三三模(理))习近平总书记提出:乡村振兴,人才是关键.要积极培养本土人才,鼓励外出能人返乡创业.为鼓励返乡创业,黑龙江对青山镇镇政府决定投入创业资金和开展“创业技术培训”帮扶返乡创业人员.预计该镇政府每年投入的创业资金构成一个等差数列(单位万元,),每年开展“创业技术培训”投入的资金为第一年创业资金的倍,已知.则预计该镇政府帮扶五年累计总投入资金的最大值为()A.72万元 B.96万元 C.120万元 D.144万元3.(2021·四川遂宁市·高三其他模拟(理))定义函数,其中表示不超过的最大整数,例如:,,.当时,的值域为.记集合中元素的个数为,则的值为()A. B. C. D.4.(2021·全国高三其他模拟(理))已知等差数列的公差,为其前n项和,则的最小值为___________.5.(2021·全国高三其他模拟(理))已知数列…,其中在第个1与第个1之间插入个若该数列的前项的和为则___________.6.(2021·广东揭阳市·高三其他模拟)已知正项等差数列的前项和为,满足,,(1)求数列的通项公式;(2)若,记数列的前项和,求.7.(2021·全国高三其他模拟(理))已知数列的前项和为,且,.(1)求数列的通项公式;(2)若数列满足,,求数列的前项和.8.(2021·全国高三其他模拟(理))已知各项均为正数的数列满足,且,.(1)证明:数列是等差数列;(2)数列的前项和为,求证:.9.(2021·山东泰安市·高三其他模拟)设各项均为正的数列的前项和为,且.(1)求数列的通项公式;(2)若,求数列的前项的和.10.(2019·浙江高三期末)在数列、中,设是数列的前项和,已知,,,.(Ⅰ)求和;(Ⅱ)若时,恒成立,求整数的最小值.练真题练真题TIDHNEG1.(2020·浙江省高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列就是二阶等差数列,数列的前3项和是________.2.(2020·海南省高考真题)将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列{an},则{an}的前n项和为________.3.(2019·北京高考真题(理))设等差数列{an}的前n项和为Sn,若a2=−3,S5=−10,则a5=__________,Sn的最小值为__________.4.(2021·全国高考真题(文))记为数列的前n项和,已知,且数列是等差数列,证明:是等差数列.5.(2021·全国高考真题(理))记为数列的前n项和,为数列的前n项积,已知.(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论