![高中向量知识点归纳_第1页](http://file4.renrendoc.com/view/e11cd701b097663fb682483efb410720/e11cd701b097663fb682483efb4107201.gif)
![高中向量知识点归纳_第2页](http://file4.renrendoc.com/view/e11cd701b097663fb682483efb410720/e11cd701b097663fb682483efb4107202.gif)
![高中向量知识点归纳_第3页](http://file4.renrendoc.com/view/e11cd701b097663fb682483efb410720/e11cd701b097663fb682483efb4107203.gif)
![高中向量知识点归纳_第4页](http://file4.renrendoc.com/view/e11cd701b097663fb682483efb410720/e11cd701b097663fb682483efb4107204.gif)
![高中向量知识点归纳_第5页](http://file4.renrendoc.com/view/e11cd701b097663fb682483efb410720/e11cd701b097663fb682483efb4107205.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中向量知识点归纳高中向量知识点归纳高中向量知识点归纳V:1.0精细整理,仅供参考高中向量知识点归纳日期:20xx年X月向量一、平面向量的概念及线性运算1.向量的有关概念名称定义备注向量既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量长度为0的向量;其方向是任意的记作0单位向量长度等于1个单位的向量非零向量a的单位向量为±eq\f(a,|a|)平行向量方向相同或相反的非零向量0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量长度相等且方向相同的向量两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为02.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a+b=b+a.(2)结合律:(a+b)+c=a+(b+c).减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb3.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.二、平面向量基本定理及坐标表示1.平面向量基本定理如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模设a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=eq\r(x\o\al(2,1)+y\o\al(2,1)).(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A(x1,y1),B(x2,y2),则eq\o(AB,\s\up6(→))=(x2-x1,y2-y1),|eq\o(AB,\s\up6(→))|=eq\r(x2-x12+y2-y12).3.平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),a∥b⇔x1y2-x2y1=0.三、平面向量的数量积1.平面向量的数量积已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a和b的数量积(或内积),记作a·b=|a||b|cosθ.规定:零向量与任一向量的数量积为__0__.两个非零向量a与b垂直的充要条件是a·b=0,两个非零向量a与b平行的充要条件是a·b=±|a||b|.2.平面向量数量积的几何意义数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.3.平面向量数量积的重要性质(1)e·a=a·e=|a|cosθ;(2)非零向量a,b,a⊥b⇔a·b=0;(3)当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|,a·a=a2,|a|=eq\r(a·a);(4)cosθ=eq\f(a·b,|a||b|);(5)|a·b|__≤__|a||b|.4.平面向量数量积满足的运算律(1)a·b=b·a(交换律);(2)(λa)·b=λ(a·b)=a·(λb)(λ为实数);(3)(a+b)·c=a·c+b·c.5.平面向量数量积有关性质的坐标表示设向量a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2,由此得到(1)若a=(x,y),则|a|2=x2+y2或|a|=eq\r(x2+y2).(2)设A(x1,y1),B(x2,y2),则A、B两点间的距离|AB|=|eq\o(AB,\s
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车整车运输合同保险
- 2024年医疗健康大数据平台开发合同
- 数字艺术收藏与交易合同
- 餐饮行业食品安全保证合同协议
- 物业承包服务合同
- 电子商务行业商品信息真实免责合同
- 高峰会城市论坛技术支持合同
- 二零二四年度企业人力资源优化方案代理合同协议书3篇
- 二零二四年度企业培训项目效果评估合同3篇
- 二零二五年度车贷保证金合同模板(汽车金融定制)3篇
- 安全生产法律法规汇编(2025版)
- 2024年英语高考全国各地完形填空试题及解析
- 2024至2030年中国餐饮管理及无线自助点单系统数据监测研究报告
- 2024年服装门店批发管理系统软件项目可行性研究报告
- 体育概论(第二版)课件第三章体育目的
- T-GDASE 0042-2024 固定式液压升降装置安全技术规范
- 香港朗文4B单词及句子
- 运动技能学习与控制课件第五章运动中的中枢控制
- 财务部规范化管理 流程图
- 断绝关系协议书范文参考(5篇)
- 最新变态心理学课件
评论
0/150
提交评论