




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.已知,那么下列等式中,不一定正确的是()A. B. C. D.2.如图,与是以坐标原点为位似中心的位似图形,若点是的中点,的面积是6,则的面积为()A.9 B.12 C.18 D.243.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.18 B.16 C.34.如图,一个可以自由转动的转盘被平均分成7个大小相同的扇形,每个扇形上分别写有“中”、“国”、“梦”三个字指针的位置固定,转动转盘停止后,指针指向“中”字所在扇形的概率是()A. B. C. D.5.关于的方程的根的情况,正确的是().A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根6.已知x1,x2是一元二次方程的两根,则x1+x2的值是()A.0 B.2 C.-2 D.47.给出四个实数,2,0,-1,其中负数是(
)A. B.2 C.0 D.-18.关于的一元二次方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.不能确定9.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且AB=BD,则tanD的值为()A. B. C. D.10.下列各选项的事件中,发生的可能性大小相等的是()A.小明去某路口,碰到红灯,黄灯和绿灯B.掷一枚图钉,落地后钉尖“朝上”和“朝下”C.小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上D.小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”11.已知点(-1,y1)、(2,y2)、(π,y3)在双曲线上,则下列关系式正确的是()A.y1>y2>y3 B.y1>y3>y2 C.y2>y1>y3 D.y3>y1>y212.如图,平行四边形的顶点在双曲线上,顶点在双曲线上,中点恰好落在轴上,已知,则的值为()A.-8 B.-6 C.-4 D.-2二、填空题(每题4分,共24分)13.已知a、b、c满足,a、b、c都不为0,则=_____.14.在△ABC中,tanB=,BC边上的高AD=6,AC=3,则BC长为_____.15.圆锥的侧面展开图的圆心角是120°,其底面圆的半径为2cm,则其侧面积为_____.16.二次函数图象的顶点坐标为________.17.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=1.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是(写出所有正确结论的序号).18.因式分解:ax3y﹣axy3=_____.三、解答题(共78分)19.(8分)已知抛物线的解析式是y=x1﹣(k+1)x+1k﹣1.(1)求证:此抛物线与x轴必有两个不同的交点;(1)若抛物线与直线y=x+k1﹣1的一个交点在y轴上,求该二次函数的顶点坐标.20.(8分)如图,在正方形ABCD中,点M、N分别在AB、BC上,AB=4,AM=1,BN=.(1)求证:ΔADM∽ΔBMN;(2)求∠DMN的度数.21.(8分)化简:22.(10分)已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当△ADE是等腰三角形时,请直接写出AE的长.23.(10分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.24.(10分)商场销售某种冰箱,该种冰箱每台进价为2500元,已知原销售价为每台2900元时,平均每天能售出8台.若在原销售价的基础上每台降价50元,则平均每天可多售出4台.设每台冰箱的实际售价比原销售价降低了元.(1)填表:每天的销售量/台每台销售利润/元降价前8400降价后(2)商场为使这种冰箱平均每天的销售利润达到最大时,则每台冰箱的实际售价应定为多少元?25.(12分)若,且3a+2b﹣4c=9,求a+b﹣c的值是多少?26.甲、乙、丙三人进行乒乓球比赛.他们通过摸球的方式决定首场比赛的两个选手:在一个不透明的口袋中放入两个红球和一个白球,这些球除颜色外其他都相同,将它们搅匀,三人从中各摸出一个球,摸到红球的两人即为首场比赛选手.求甲、丙两人成为比赛选手的概率.(请用画树状图或列表等方法写出分析过程并给出结果.)
参考答案一、选择题(每题4分,共48分)1、B【分析】根据比例的性质作答.【详解】A、由比例的性质得到3y=5x,故本选项不符合题意.
B、根据比例的性质得到x+y=8k(k是正整数),故本选项符合题意.
C、根据合比性质得到,故本选项不符合题意.
D、根据等比性质得到,故本选项不符合题意.
故选:B.【点睛】此题考查了比例的性质,解题关键在于需要掌握内项之积等于外项之积、合比性质和等比性质.2、D【分析】根据位似图形的性质,再结合点A与点的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案.【详解】解:∵△ABC与△是以坐标原点O为位似中心的位似图形,且A为的中心,∴△ABC与△的相似比为:1:2;∵位似图形的面积比等于相似比的平方,∴△的面积等于4倍的△ABC的面积,即.故答案为:D.【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.3、B【解析】画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解.解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率=212故选B.4、B【分析】直接利用概率公式计算求解即可.【详解】转动转盘停止后,指针指向“中”字所在扇形的概率是,故选:B.【点睛】本题考查概率的计算,解题的关键是熟练掌握概率的计算公式.5、A【分析】根据一元二次方程根的判别式,即可得到方程根的情况.【详解】解:∵,∴,∴原方程有两个不相等的实数根;故选择:A.【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式.6、B【解析】∵x1,x1是一元二次方程的两根,∴x1+x1=1.故选B.7、D【分析】根据负数的定义,负数小于0即可得出答案.【详解】根据题意:负数是-1,故答案为:D.【点睛】此题主要考查了实数,正确把握负数的定义是解题关键.8、A【分析】根据根的判别式即可求解判断.【详解】∵△=b2-4ac=m2+4>0,故方程有两个不相等的实数根,故选A.【点睛】此题主要考查一元二次方程根的判别式,解题的关键是熟知判别式的性质.9、D【分析】设AC=m,解直角三角形求出AB,BC,BD即可解决问题.【详解】设AC=m,在Rt△ABC中,∵∠C=90°,∠ABC=30°,∴AB=2AC=2m,BC=AC=m,∴BD=AB=2m,DC=2m+m,∴tan∠ADC===2﹣.故选:D.【点睛】本题考查解直角三角形,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10、D【分析】根据概率公式逐一判断即可.【详解】A、∵交通信号灯有“红、绿、黄”三种颜色,但是红黄绿灯发生的时间一般不相同,∴它们发生的概率不相同,∴选项A不正确;B、∵图钉上下不一样,∴钉尖朝上的概率和钉尖着地的概率不相同,∴选项B不正确;C、∵“直角三角形”三边的长度不相同,∴小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上走,他出现在各边上的概率不相同,∴选项C不正确;D、小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”的可能性大小相等,∴选项D正确.故选:D.【点睛】此题考查的是概率问题,掌握根据概率公式分析概率的大小是解决此题的关键.11、B【解析】分析:根据题意,可得这个反比例函数图象所在的象限及每个象限的增减性,比较三个点的纵横坐标,分析可得三点纵坐标的大小,即可得答案.详解:∵双曲线中的-(k1+1)<0,∴这个反比例函数在二、四象限,且在每个象限都是增函数,且1<,
∴y1>0,y1<y3<0;
故有y1>y3>y1.
故选B.点睛:考查了运用反比例函数图象的性质判断函数值的大小,解题关键牢记反比例函数(x≠0)的性质:当k>0时,图像分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;当k<0时,图像分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大.
12、C【分析】连接OB,过点B作轴于点D,过点C作于点E,证,再利用三角形的面积求解即可.【详解】解:连接OB,过点B作轴于点D,过点C作于点E,∵点P是BC的中点∴PC=PB∵∴∴∵∴∵点在双曲线上∴∴∴∴∵点在双曲线上∴∴.故选:C.【点睛】本题考查的知识点是反比例函数的图象与性质、平行四边形的性质、全等三角形的判定与性质、三角形的面积公式等,掌握以上知识点是解此题的关键.二、填空题(每题4分,共24分)13、【解析】设则所以,故答案为:.14、5或1【分析】分两种情况:AC与AB在AD同侧,AC与AB在AD的两侧,在Rt△ABD中,通过解直角三角形求得BD,用勾股定理求得CD,再由线段和差求BC便可.【详解】解:情况一:当AC与AB在AD同侧时,如图1,
∵AD是BC边上的高,AD=6,tanB=,AC=3
∴在Rt△ABD中,,在Rt△ACD中,利用勾股定理得∴BC=BD-CD=8-3=5;
情况二:当AC与AB在AD的两侧,如图2,
∵AD是BC边上的高,AD=6,tanB=,AC=3
∴在Rt△ABD中,,在Rt△ACD中,利用勾股定理得∴BC=BD+CD=8+3=1;
综上,BC=5或1.
故答案为:5或1.【点睛】本题主要考查了解直角三角形的应用题,关键是分情况讨论,比较基础,容易出错的地方是漏解.15、12πcm【分析】先根据底面半径求出底面周长,即为扇形的弧长,再设出扇形的半径,根据扇形的弧长公式,确定扇形的半径;最后用扇形的面积公式求解即可.【详解】解:∵底面圆的半径为2cm,∴底面周长为4πcm,∴侧面展开扇形的弧长为4πcm,设扇形的半径为r,∵圆锥的侧面展开图的圆心角是120°,∴=4π,解得:r=6,∴侧面积为×4π×6=12πcm,故答案为:12πcm.【点睛】本题考查了圆锥的表面积、扇形的面积以及弧长公式,解答的关键在于对基础知识的牢固掌握和灵活运用.16、【解析】二次函数(a≠0)的顶点坐标是(h,k).【详解】解:根据二次函数的顶点式方程知,该函数的顶点坐标是:(1,2).故答案为:(1,2).【点睛】本题考查了二次函数的性质和二次函数的三种形式,解答该题时,需熟悉二次函数的顶点式方程中的h,k所表示的意义.17、①②④.【解析】①∵AB是⊙O的直径,弦CD⊥AB,∴,DG=CG,∴∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED,故①正确;②∵=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2,故②正确;③∵AF=1,FG=2,∴AG==,∴在Rt△AGD中,tan∠ADG==,∴tan∠E=,故③错误;④∵DF=DG+FG=6,AD==,∴S△ADF=DF•AG=×6×,∵△ADF∽△AED,∴,∴=,∴S△AED=,∴S△DEF=S△AED﹣S△ADF=;故④正确.故答案为①②④.18、axy(x+y)(x﹣y)【分析】提取公因式axy后剩余的项满足平方差公式,再运用平方差公式即可;【详解】解:ax3y﹣axy3=axy=axy(x+y)(x﹣y);故答案为:axy(x+y)(x﹣y)【点睛】本题主要考查了提公因式法与公式法的运用,掌握提公因式法,平方差公式是解题的关键.三、解答题(共78分)19、(1)此抛物线与x轴必有两个不同的交点;(1)(,﹣).【分析】(1)由△=[-(k+1)]1-4×1×(1k-1)=k1-4k+11=(k-1)1+8>0可得答案;
(1)先根据抛物线与直线y=x+k1-1的一个交点在y轴上得出1k-1=k1-1,据此求得k的值,再代入函数解析式,配方成顶点式,从而得出答案.【详解】(1)∵△=[﹣(k+1)]1﹣4×1×(1k﹣1)=k1﹣4k+11=(k﹣1)1+8>0,∴此抛物线与x轴必有两个不同的交点;(1)∵抛物线与直线y=x+k1﹣1的一个交点在y轴上,∴1k﹣1=k1﹣1,解得k=1,则抛物线解析式为y=x1﹣3x=(x﹣)1﹣,所以该二次函数的顶点坐标为(,﹣).【点睛】本题主要考查的是抛物线与x轴的交点,解题的关键是掌握二次函数y=ax1+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax1+bx+c=0根之间的关系及熟练求二次函数的顶点式.20、(1)见解析;(2)90°【分析】(1)根据,,即可推出,再加上∠A=∠B=90°,就可以得出△ADM∽△BMN;(2)由△ADM∽△BMN就可以得出∠ADM=∠BMN,又∠ADM+∠AMD=90°,就可以得出∠AMD+∠BMN=90°,从而得出∠DMN的度数.【详解】(1)∵AD=4,AM=1∴MB=AB-AM=4-1=3∵,∴又∵∠A=∠B=90°∴ΔADM∽ΔBMN(2)∵ΔADM∽ΔBMN∴∠ADM=∠BMN∴∠ADM+∠AMD=90°∴∠AMD+∠BMN=90°∴∠DMN=180°-∠BMN-∠AMD=90°【点睛】本题考查了正方形的性质的运用,相似三角形的判定及性质的运用,解答时证明△ADM∽△BMN是解答的关键.21、【分析】根据特殊角的三角函数值与二次根式的运算法则即可求解.【详解】解:原式====.【点睛】此题主要考查实数的运算,解题的关键是熟知特殊角的三角函数值.22、(1)证明见解析;(2)y=x2-x+1=(x-)2+;(3)AE的长为2-或.【分析】(1)根据等腰直角三角形的性质及三角形内角与外角的关系,易证△ABD∽△DCE.
(2)由△ABD∽△DCE,对应边成比例及等腰直角三角形的性质可求出y与x的函数关系式;
(3)当△ADE是等腰三角形时,因为三角形的腰和底不明确,所以应分AD=DE,AE=DE,AD=AE三种情况讨论求出满足题意的AE的长即可.【详解】(1)证明:
∵∠BAC=90°,AB=AC
∴∠B=∠C=∠ADE=45°
∵∠ADC=∠B+∠BAD=∠ADE+∠CDE
∴∠BAD=∠CDE
∴△ABD∽△DCE;
(2)由(1)得△ABD∽△DCE,
∴=,
∵∠BAC=90°,AB=AC=1,
∴BC=,CD=-x,EC=1-y,
∴=,
∴y=x2-x+1=(x-)2+;
(3)当AD=DE时,△ABD≌△CDE,
∴BD=CE,
∴x=1-y,即x-x2=x,
∵x≠0,
∴等式左右两边同时除以x得:x=-1
∴AE=1-x=2-,
当AE=DE时,DE⊥AC,此时D是BC中点,E也是AC的中点,
所以,AE=;
当AD=AE时,∠DAE=90°,D与B重合,不合题意;
综上,在AC上存在点E,使△ADE是等腰三角形,
AE的长为2-或.【点睛】本题考查相似三角形的性质、等腰直角三角形的性质、等腰三角形的判定和性质、二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.23、(1)二次函数的表达式y=x2﹣2x﹣3;(2)①PM最大=;②P(2,﹣3)或(3-,2﹣4).【分析】(1)根据待定系数法,可得答案;(2)①根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案.【详解】(1)将A,B,C代入函数解析式,得,解得,这个二次函数的表达式y=x2﹣2x﹣3;(2)设BC的解析式为y=kx+b,将B,C的坐标代入函数解析式,得,解得,BC的解析式为y=x﹣3,设M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,当n=时,PM最大=;②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=0(不符合题意,舍),n2=2,n2﹣2n﹣3=-3,P(2,-3);当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合题意,舍),n2=3+(不符合题意,舍),n3=3-,n2﹣2n﹣3=2-4,P(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 门头装修保修协议书
- 集体股权分红协议书
- ktv噪音环保协议书
- 饭堂内部转让协议书
- 起诉房产分割协议书
- 共同承包地建房协议书
- 配件损坏赔偿协议书
- 防汛仓库整修协议书
- 婚没孩子离婚协议书
- 解除资产合同协议书
- 粮食工程专业实习报告范文
- 2025年高考数学复习(新高考专用)重难点09极值点偏移与拐点偏移问题【七大题型】特训(学生版+解析)
- 广东省华附、省实、广雅、深中2025届高三四校联考语文试题与答案
- 皮下气肿治疗
- DBJT45-007-2012 广西壮族自治区先张法预应力混凝土管桩基础技术规程
- 皮肌炎皮肤护理查房
- 2025年河北省职业院校技能大赛工业互联网集成应用参考试题库(含答案)
- 4-6 《窦娥冤》《雷雨》《哈姆雷特》(说课稿)-2024-2025学年高一语文必修下册同步备课系列(说课稿+说课稿)(统编版2019)
- 电大《法理学》期末考试复习资料
- 国家保密培训课件
- 安全生产法律法规汇编(2025版)
评论
0/150
提交评论