版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。若从盒子里随机摸取一个球,有三种可能性相等的结果,设摸到的红球的概率为P,则P的值为()A. B. C.或 D.或2.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,矩形ABCD内的一个动点P落在阴影部分的概率是()A. B. C. D.3.下列图形中,是中心对称图形,但不是轴对称图形的是()A. B. C. D.4.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,若旋转角为20°,则∠1为()A.110° B.120° C.150° D.160°5.某人沿着斜坡前进,当他前进50米时上升的高度为25米,则斜坡的坡度是()A. B.1:3 C. D.1:26.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽1.8米,最深处水深1.2米,则此输水管道的直径是()A.1.5 B.1 C.2 D.47.如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=()A.30° B.35° C.45° D.60°8.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,观察两枚骰子向上一面的点数情况.则下列事件为随机事件的是()A.点数之和等于1 B.点数之和等于9C.点数之和大于1 D.点数之和大于129.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A.6 B.12 C.24 D.不能确定10.估计+1的值在()A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间二、填空题(每小题3分,共24分)11.如图,在矩形ABCD中,AB=4,AD=3,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是______(结果保留π).12.如图,建筑物BC上有一旗杆AB,从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为__________m.(结果取整数.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)13.方程(x﹣1)(x﹣3)=0的解为_____.14.关于的一元二次方程有一个解是,另一个根为_______.15.设α、β是方程x2+2018x﹣2=0的两根,则(α2+2018α﹣1)(β2+2018β+2)=_____.16.计算:_______.17.如图,在△ABC中DE∥BC,点D在AB边上,点E在AC边上,且AD:DB=2:3,四边形DBCE的面积是10.5,则△ADE的面积是____.18.点(5,﹣)关于原点对称的点的坐标为__________.三、解答题(共66分)19.(10分)已知:梯形ABCD中,AD//BC,AD=AB,对角线AC、BD交于点E,点F在边BC上,且∠BEF=∠BAC.(1)求证:△AED∽△CFE;(2)当EF//DC时,求证:AE=DE.20.(6分)计算:|-|-+20200;21.(6分)已知⊙中,为直径,、分别切⊙于点、.(1)如图①,若,求的大小;(2)如图②,过点作∥,交于点,交⊙于点,若,求的大小.22.(8分)如图,直线分别与轴交于点,与轴交于点,与双曲线交于点.(1)求与的值;(2)已知是轴上的一点,当时,求点的坐标.23.(8分)已知关于x的一元二次方程x1=1(1-m)x-m1有两个实数根为x1,x1.(1)求m的取值范围;(1)设y=x1+x1,求当m为何值时,y有最小值.24.(8分)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为2,求FH的长.25.(10分)某影城装修后重新开业,试营业期间统计发现,影院每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数的关系:y=﹣2x+240(50≤x≤80),x是整数,影院每天运营成本为2200元,设影院每天的利润为w(元)(利润=票房收入﹣运营成本)(1)试求w与x之间的函数关系式;(2)影院将电影票售价定为多少时,每天获利最大?最大利润是多少元?26.(10分)某校组织了主题为“我是青奥志愿者”的电子小报作品征集活动,先从中随机抽取了部分作品,按,,,四个等级进行评分,然后根据统计结果绘制了如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)求一共抽取了多少份作品?(2)此次抽取的作品中等级为的作品有份,并补全条形统计图;(3)扇形统计图中等级为的扇形圆心角的度数为;(4)若该校共征集到800份作品,请估计等级为的作品约有多少份?
参考答案一、选择题(每小题3分,共30分)1、D【分析】分情况讨论后,直接利用概率公式进行计算即可.【详解】解:当白球1个,红球2个时:摸到的红球的概率为:P=当白球2个,红球1个时:摸到的红球的概率为:P=故摸到的红球的概率为:或故选:D【点睛】本题考查了概率公式,掌握概率公式及分类讨论是解题的关键.2、B【解析】根据矩形的性质,得△EBO≌△FDO,再由△AOB与△OBC同底等高,△AOB与△ABC同底且△AOB的高是△ABC高的得出结论.【详解】解:∵四边形为矩形,∴OB=OD=OA=OC,在△EBO与△FDO中,,∴△EBO≌△FDO,∴阴影部分的面积=S△AEO+S△EBO=S△AOB,∵△AOB与△ABC同底且△AOB的高是△ABC高的,∴S△AOB=S△OBC=S矩形ABCD.故选B.【点睛】本题考查了矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.3、C【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形.一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A.既是中心对称图形,也是轴对称图形,故不符合题意;B.既是中心对称图形,也是轴对称图形,故不符合题意;C.是中心对称图形,但不是轴对称图形,故符合题意;D.不是中心对称图形,是轴对称图形,故不符合题意;故选C.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.4、A【解析】设C′D′与BC交于点E,如图所示:∵旋转角为20°,∴∠DAD′=20°,∴∠BAD′=90°−∠DAD′=70°.∵∠BAD′+∠B+∠BED′+∠D′=360°,∴∠BED′=360°−70°−90°−90°=11°,∴∠1=∠BED′=110°.故选A.5、A【分析】根据题意,利用勾股定理可先求出某人走的水平距离,再求出这个斜坡的坡度即可.【详解】解:根据题意,某人走的水平距离为:,∴坡度;故选:A.【点睛】此题主要考查学生对坡度的理解,在熟悉了坡度的定义后利用勾股定理求得水平距离是解决此题的关键.6、B【解析】试题分析:设半径为r,过O作OE⊥AB交AB于点D,连接OA、OB,则AD=AB=×1.8=1.4米,设OA=r,则OD=r﹣DE=r﹣1.2,在Rt△OAD中,OA2=AD2+OD2,即r2=1.42+(r﹣1.2)2,解得r=1.5米,故此输水管道的直径=2r=2×1.5=1米.故选B.考点:垂径定理的应用.7、A【解析】试题分析:连接OA,根据直线PA为切线可得∠OAP=90°,根据正六边形的性质可得∠OAB=60°,则∠PAB=∠OAP-∠OAB=90°-60°=30°.考点:切线的性质8、B【分析】根据随机事件的定义逐项判断即可.【详解】A、点数之和等于1,是不可能事件,不合题意;B、点数之和等于9,是随机事件,符合题意;C、点数之和大于1,是必然事件,不合题意;D、点数之和大于12,是不可能事件,不合题意;故选:B【点睛】本题考查事件的分类,事件根据其发生的可能性大小分为必然事件、随机事件、不可能事件.随机事件是指在一定条件下,可能发生也可能不发生的事件.9、B【分析】由矩形ABCD可得:S△AOD=S矩形ABCD,又由AB=15,BC=20,可求得AC的长,则可求得OA与OD的长,又由S△AOD=S△APO+S△DPO=OA•PE+OD•PF,代入数值即可求得结果.【详解】连接OP,如图所示:∵四边形ABCD是矩形,∴AC=BD,OA=OC=AC,OB=OD=BD,∠ABC=90°,S△AOD=S矩形ABCD,∴OA=OD=AC,∵AB=15,BC=20,∴AC===25,S△AOD=S矩形ABCD=×15×20=75,∴OA=OD=,∴S△AOD=S△APO+S△DPO=OA•PE+OD•PF=OA•(PE+PF)=×(PE+PF)=75,∴PE+PF=1.∴点P到矩形的两条对角线AC和BD的距离之和是1.故选B.【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.10、B【解析】分析:直接利用2<<3,进而得出答案.详解:∵2<<3,∴3<+1<4,故选B.点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.二、填空题(每小题3分,共24分)11、12﹣π【分析】用矩形的面积减去四分之一圆的面积即可求得阴影部分的面积.【详解】解:在矩形中,,故答案为:.【点睛】本题考查了扇形的面积的计算及矩形的性质,能够了解两个扇形构成半圆是解答本题的关键.12、1【分析】根据正切的定义分别求出AC、BC,结合图形计算即可.【详解】解:由题意,CD=10,∠BDC=45°,∠ADC=51°,在Rt△BCD中,tan∠BDC=,则BC=CD•tan45°=10,在Rt△ACD中,tan∠ADC=,则AC=CD•tan∠ADC≈10×1.11=11.1,∴AB=AC-BC=1.1≈1(m),故答案为:1.【点睛】本题考查的是解直角三角形的应用——仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.13、x1=3,x2=1【分析】利用因式分解法求解可得.【详解】解:∵(x﹣1)(x﹣3)=0,∴x﹣1=0或x﹣3=0,解得x1=3,x2=1,故答案为:x1=3,x2=1.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.14、【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把0代入方程求解可得m的值;把m的值代入一元二次方程中,求出x的值,即可得出答案.【详解】解:把x=0代入方程(m+2)x2+3x+m2-4=0得到m2-4=0,解得:m=±2,∵m-2≠0,∴m=-2,当m=-2时,原方程为:-4x2+3x=0解得:x1=0,x2=,则方程的另一根为x=.【点睛】本题主要考查对一元二次方程的解,解一元二次方程等知识点的理解和掌握,能求出m的值是解此题的关键.15、4【分析】把、分别代入,可求得和的值,然后把求得的值代入计算即可.【详解】把、分别代入,得和-2=0,∴和,∴=(2-1)×(2+2)=4.故答案为4.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以一元二次方程的解也称为一元二次方程的根.16、【分析】原式把变形为,然后逆运用积的乘方进行运算即可得到答案.【详解】解:=====.故答案为:.【点睛】此题主要考查了幂的运算,熟练掌握积的乘方运算法则是解答此题的关键.17、1【分析】由AD:DB=1:3,可以得到相似比为1:5,所以得到面积比为4:15,设△ADE的面积为4x,则△ABC的面积为15x,故四边形DBCE的面积为11x,根据题意四边形的面积为10.5,可以求出x,即可求出△ADE的面积.【详解】∵DE∥BC∴,∵AD:DB=1:3∴相似比=1:5
∴面积比为4:15设△ADE的面积为4x,则△ABC的面积为15x,故四边形DBCE的面积为11x∴11x=10.5,解得x=0.5∴△ADE的面积为:4×0.5=1故答案为:1.【点睛】本题主要考查了相似三角形,熟练面积比等于相似比的平方以及准确的列出方程是解决本题的关键.18、(-5,)【分析】让两点的横纵坐标均互为相反数可得所求的坐标.【详解】∵两点关于原点对称,∴横坐标为-5,纵坐标为,故点P(5,−)关于原点对称的点的坐标是:(-5,).故答案为:(-5,).【点睛】此题主要考查了关于原点对称的坐标的特点:两点的横坐标互为相反数;纵坐标互为相反数.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析.【解析】试题分析:两组角对应相等,两个三角形相似.证明根据相似三角形对应边成比例,即可证明.试题解析:(1)又∵AD//BC,(2)∵EF//DC,∴.∵AD//BC,∴,∴.即,20、【分析】先根据绝对值的意义、二次根式的性质、零指数幂的意义逐项化简,再合并同类二次根式即可.【详解】原式==.【点睛】本题考查了实数的混合运算,正确化简各数是解答本题的关键.21、(1);(2)【分析】(1)根据切线性质求出∠OBM=∠OAM=90°,根据圆周角定理求出∠COB,求出∠BOA,即可求出答案;
(2)连接AB、AD,得出平行四边形,推出MB=AD,推出AB=AD,求出等边三角形AMB,即可得出答案.【详解】(1)连接OB,
∵MA、MB分别切⊙O于A.
B,
∴∠OBM=∠OAM=90°,
∵弧BC对的圆周角是∠BAC,圆心角是∠BOC,∠BAC=25°,
∴∠BOC=2∠BAC=50°,
∴∠BOA=180°−50°=130°,
∴∠AMB=360°−90°−90°−130°=50°.
(2)连接AD,AB,
∵BD∥AM,DB=AM,
∴四边形BMAD是平行四边形,
∴BM=AD,
∵MA切⊙O于A,
∴AC⊥AM,
∵BD∥AM,
∴BD⊥AC,
∵AC过O,
∴BE=DE,
∴AB=AD=BM,
∵MA、MB分别切⊙O于A.
B,
∴MA=MB,
∴BM=MA=AB,
∴△BMA是等边三角形,
∴∠AMB=60°.【点睛】本题考查切线的性质、平行四边形的判定与性质、等边三角形的判定与性质,解题的关键是掌握切线的性质、平行四边形的判定与性质、等边三角形的判定与性质.22、(1)12;(2)或.【解析】(1)把点(4,m)代入直线求得m,然后代入与反比例函数,求出k;(2)设点P的纵坐标为y,一次函数与x轴相交于点A,与y轴相交于点C,则A(-2,0),C(0,1),然后根据S△ABP=S△APC+S△BPC列出关于y的方程,解方程求得即可.【详解】解:(1)点在一次函数上,,又点在反比例函数上,;(2)设点的纵坐标为,一次函数与轴相交于点,与轴相交于点,,,又点在轴上,,,即,,或或.【点睛】本题考查的是反比例函数的图象与一次函数图象的交点问题,三角形的面积等知识,求出交点坐标,利用数形结合思想是解题的重点.23、(1)m≤;(1)m=【分析】(1)若一元二次方程有两个实数根,则根的判别式△=b1-4ac≥0,建立关于m的不等式,可求出m的取值范围;
(1)根据根与系数的关系可得出x1+x1的表达式,进而可得出y、m的函数关系式,根据函数的性质及(1)题得出的自变量的取值范围,即可求出y有最小值时及对应的m值.【详解】解:(1)将原方程整理为x1+1(m-1)x+m1=0;∵原方程有两个实数根,∴△=〔1(m-1)〕1-4m1=-8m+4≥0,∴m≤(1)∵x1,x1为方程的两根,∴y=x1+x1=-1m+1,∵-1<0∴y随m的增大而减小∵m≤∴当m=时,y有最小值.【点睛】此题是根的判别式、根与系数的关系与一次函数的结合题.牢记一次函数的性质是解答(1)题的关键.24、(1)见解析;(2)证明见解析;(3)FH=2.【解析】(1)先求出AB,BC,AC,再分情况求出CD或AD,即可画出图形;(2)先判断出∠A+∠ADB=140°=∠ADC,即可得出结论;(3)先判断出△FEH∽△FHG,得出FH2=FE•FG,再判断出EQ=FE,继而求出FG•FE=8,即可得出结论.【详解】(1)由图1知,AB=,BC=2,∠ABC=90°,AC=5,∵四边形ABCD是以AC为“相似对角线”的四边形,当∠ACD=90°时,△ACD∽△ABC或△ACD∽△CBA,∴或,∴CD=10或CD=2.5同理:当∠CAD=90°时,AD=2.5或AD=10,(2)∵∠ABC=80°,BD平分∠ABC,∴∠ABD=∠DBC=40°,∴∠A+∠ADB=140°∵∠ADC=140°,∴∠BDC+∠ADB=140°,∴∠A=∠BDC,∴△ABD∽△BDC,∴BD是四边形ABCD的“相似对角线”;(3)如图3,∵FH是四边形EFGH的“相似对角线”,∴△EFH与△HFG相似,∵∠EFH=∠HFG,∴△FEH∽△FHG,∴,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行新入行客户经理工作总结
- 实习生工作总结15篇
- 软程序员辞职报告汇编八篇
- 教师师德工作计划范文
- 买卖合同范文集锦9篇
- 新生必bei-大学生存法则(重庆工商职业学院)知到智慧树答案
- 冀教版三年级上册 lesson 14 my body
- 《战略管理会计 》课件
- 《稿继续教育》课件
- 大班欢乐颂教案反思4篇
- 大学与文化传承智慧树知到期末考试答案章节答案2024年浙江大学
- 国家开放大学电大《11662会计信息系统(本)》期末终考题库及标准参考答案
- 2024年考研管理类联考综合能力真题及答案
- 中医急救培训培训课件
- 生物化学(第二版)-电子教案(完整版)
- 组织行为学(中国人民大学)
- 《推荐一本书》(完美版)教学课件
- GB∕T 41115-2021 焊缝无损检测 超声检测 衍射时差技术(TOFD)的应用
- 《走进爱国主义教育基地》ppt
- 红色大气工会基础知识培训培训内容PPT演示
- 分镜头脚本(空表)
评论
0/150
提交评论