高等分离工程 吸附分离技术_第1页
高等分离工程 吸附分离技术_第2页
高等分离工程 吸附分离技术_第3页
高等分离工程 吸附分离技术_第4页
高等分离工程 吸附分离技术_第5页
已阅读5页,还剩107页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高等分离工程吸附分离技术第1页,共112页,2022年,5月20日,21点14分,星期四主要参考书:冯孝庭主编,《吸附分离技术》,化学工业出版社叶振华主编,《化工吸附分离过程》

中国石化出版社战树麟,《石油化工分离工程》

石油工业出版社部分中外文文献第2页,共112页,2022年,5月20日,21点14分,星期四吸附分离是一门古老的学科。人类对吸附的认识和应用可以追溯到2000年以前远古时代,在马王堆古墓出土文物中人们就发现古人用木炭来防水吸潮。说明当时人们已经了解到木炭具有很强的吸附作用。50年代以前,吸附剂种类少(活性炭,硅藻土和酸性白土),且吸附性能差,人们对吸附的知识还停留在直接开发使用上,应用叶只限于脱色,脱臭和防潮用,吸附分离技术一直以辅助的作用出现在化工单元操作中。化工吸附分离成为大型工业的生产工艺和过程和完整的单元操作过程,是在60年代迅速发展起来的概述第3页,共112页,2022年,5月20日,21点14分,星期四60年代,合成固体吸附剂材料有了新的发展,新型吸附剂的开发为吸附分离技术的进一步应用打下了基础。首先,美国Mobile公司发明了合成沸石分子筛(A,X,Y,丝光沸石等等),它对空气中的氮具有优先吸附的特征,因此被用于开发、分离空气制氧的工艺过程活性炭吸附剂性能不断得到改善,制备了活性炭纤维和炭分子筛,一些大孔吸附树脂也不断开发出来。Skarstrom发明吸附循环分离技术。使吸附分离成为一种连续单元操作过程,

经过一系列的改进和完善,变压吸附技术用于大规模气体分离场合的成功开发,在吸附领域取得突破性的进展,使吸附分离技术成为化学工业和石油化学工业中重要的气体分离和净化过程,奠定了吸附分离技术在现代工业中的重要地位。概述第4页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂吸附现象:吸附是一个表面传递过程,当气体或液体分子与多孔固体表面相接触时,由于固体表面与气体分子或液体分子之间作用力大于分子之间作用力时,气体或液体分子会积聚在固体表面,这种现象称为吸附。吸附的逆过程为脱附过程。吸附过程:固体表面吸附质浓度随时间增大而增加的过程脱附过程:固体表面吸附质浓度随时间增大而减小的过程。第5页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂固体表面对气体和液体有吸附能力,具有吸附能力的固体材料称为吸附剂,被吸附物质为吸附质,通常吸附只发生在吸附剂表面局部位置,这样的位置称为吸附中心或吸附位。

吸附平衡:吸附过程进行的速率和脱附过程进行速率相等时,固体表面吸附质的浓度不再随时间而变化,这种状态为吸附平衡状态。吸附速率和吸附平衡的状态与吸附温度和吸附压力有关,在恒定温度下进行的吸附为等温吸附,恒定压力下进行的吸附为等压吸附。描述它们的曲线称为吸附等温线和吸附等压线。第6页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂吸附分类:物理吸附、化学吸附(作用力不同)物理吸附:分子间力,作用力弱,可逆,可作为凝聚。化学吸附:化学键力,作用力强,不可逆吸附。相当于化学反应。化学吸附在催化过程中起重要作用,在混合物吸附分离过程中,多数的吸附分离过程属于物理吸附。物理吸附和化学吸附的作用力不同,在吸附热,吸附速率,吸附活化能、选择性等方面表现出明显的差异。

第7页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂物理吸附和化学吸附物理吸附化学吸附吸附热(kJ/mol)吸附质吸附速率活化能温度选择性吸附层数可逆性4-40处于临界温度以下所有气体不需活化,扩散控制,速率快约等于凝聚热接近气体沸点无选择性多层吸附可逆40-200化学活性蒸汽须活化,克服能垒,速率慢化学反应热高于气体沸点有,与吸附质和吸附剂特性有关单层吸附可逆或不可逆出现新的特征吸收峰

第8页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂物理吸附、化学吸附判断:

根据吸附热大小化学吸附热大,H2(62.8kJ/mol),

CO2(83.7kJ/mol);物理吸附热小,H2(8.37kJ/mol),

CO2(25.12kJ/mol);

看吸附是不是有高度专属性,化学吸附有专属性和高度选择性,只对特定气体吸附;物理吸附则没有,对气体均有吸附性,只是吸附量大小问题。

看吸附速率和吸附量受温度影响规律,化学吸附速率随温度升高而加快,而且吸附量增加;物理吸附速率受温度影响小,吸附量随温度增加而降低。第9页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂吸附分离:利用混合物中各个组分在吸附剂固体表面吸附能力差异来进行分离的操作。吸附分离原理:A选择性吸附B分子筛效应C利用微孔扩散性质进行分离D微孔中的凝聚第10页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂选择性吸附,由于固体吸附剂表面和气体分子之间性质的差异造成同一吸附剂对不同吸附质分子吸附能力的差异,有的组分吸附能力强,有的组分吸附能力弱,直接利用吸附能力大小差异进行分离的吸附为选择性吸附。工业上分离过程大都属于这种分离原理。分子筛效应,固体吸附剂是多孔材料,如果吸附剂的孔径大小均一,并且与吸附质分子尺寸大小相当,当分子尺寸小于孔径时,分子可进入吸附剂被吸附,而比孔径大的吸附质分子被排斥在外,利用分子大小进行的吸附分离的原理为分子筛分。第11页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂利用微孔扩散性质进行分离:气体在多孔固体中扩散速率与气体性质,吸附剂性质,以及孔径大小有关,利用扩散速率的差别可以将混合物进行分离,例如空气中氧和氮在碳分子筛上的平衡吸附量大体相当,且两种分子大小都小于碳分子筛的孔径,但氧分子的动力学直径要小于氮分子的动力学直径,引而氧能以较快的速度进入分子筛孔隙被吸附,氮的速率则相对较慢,两组分得到分离。微孔中的凝聚:多孔固体周围的可凝气体在与其孔径对应压力下在附近吸附剂微孔中凝聚,利用活性炭吸附工业中工业废气中有机物属于微孔凝聚。第12页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂吸附剂及其性能在吸附分离中起关键作用:吸附剂条件:

多孔,比表面积大,对吸附质有较高的吸附能力,在这主要指内表面,外表面一般没有吸附能力

有高的选择性,对不同吸附质要有选择性的吸附作用

能再生和使用次数多

有足够的机械强度

化学性质稳定

价格合理第13页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂表1吸附剂种类碳吸附剂矿物吸附剂其他吸附剂活性炭

多孔性SiO2

合成聚合物活性炭纤维

活性氧化铝

微生物菌体碳分子筛

金属氧化物

高分子絮凝剂含碳纳米材料有机粘土无机纳米材料金属的氢氧化物微孔和中孔性金属有机材料沸石

混合型吸附剂膨润土

螯合纤维硅藻土

离子交换纤维海泡石

壳聚糖第14页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂工业用主要吸附剂:活性炭硅胶活性氧化铝沸石分子筛碳分子筛活性碳纤维聚酰胺大孔吸附树脂第15页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂

活性炭:

一种多孔含碳物质的颗粒粉末,非极性的,疏水性和亲有机物的吸附剂,具有高的比表面积。比表面积500-1000m2/g,孔径分布宽。生产主要原料:

含碳物质如木材,泥炭,煤,石油焦,果壳,其中烟煤,无烟煤和果壳是主要原料。制备过程:原料处理,炭化和活化等步骤组成,不同原料制备过程略有差别。

第16页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂

活性炭纤维:

活性炭纤维(ACF)是近几十年发展起来的一种新型吸附剂。它是以粘胶基纤维为原料,经高温碳化﹑活化后制成的纤维状新型吸附材料。ACF具有优异的结构与性能特征,与社会上公认的比较好的吸附材料——颗粒状活性炭(GAC)相比,ACF具有以下显著的的特点。1、ACF具有微孔结构,比表面积大,孔径分布狭窄而均匀,且孔呈多分散型分布。2、ACF具有一定量的表面官能团,对各种无机和有机气体、有机物及重金属离子等具有较大的吸附量,且吸附﹑脱附快。3、滤阻小,是GAC的1/3;4、对低浓度吸附质的吸附能力特别优良,。5、ACF可制成纤维束、布、毡等各种形状。6、ACF强度高,耐破损和撕裂,不会象GAC一样在操作中形成沟槽和沉降。第17页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂第18页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂

活性炭及活性炭纤维是非极性吸附剂,对非极性物质具有较强的亲和力。吸附规律:①芳香族化合物吸附力>脂肪族化合物;②分子量大的化合物吸附力>分子量小;③水中对溶质的吸附力>有机溶剂中对溶质的吸附力。第19页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂

硅胶:

一种坚硬无定形链状和网状结构的硅酸聚合物颗粒,亲水性的极性吸附剂,孔径2-20nm,主要用于吸附水和甲醇。工业上主要用于干燥脱水,最大吸水量可达30%左右,但脱水深度不够,主要用于初脱水。

制备方法:水玻璃为原料,与无机酸作用,中和沉淀出H2SiO3,经老化缩水,成型,洗涤,干燥,焙烧法制备。第20页,共112页,2022年,5月20日,21点14分,星期四图1沉淀法制备硅胶工艺流程示意图配置溶液中和沉淀老化缩水成型洗涤焙烧过筛包装成品H2SO4水玻璃水吸附原理和吸附剂第21页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂活性氧化铝:化学式Al2O3.nH2O,极性吸附剂,主要用于气体、液体的干燥脱水和碳氢化合物和石油气的脱硫,用于脱水时,脱水深度高(几个PPm),吸附水容量不及活性硅胶。制备采用沉淀法,工艺流程和硅胶制备类似。沉淀分为酸沉淀和碱沉淀,以酸沉淀为主(对原料要求低,成本低)第22页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂硅胶、氧化铝:为极性吸附剂。吸附原理:

硅醇基与化合物形成氢键硅醇基与水形成氢键硅胶吸附的水分愈多,吸附其他化合物的能力愈弱。吸水量超过17%,不能作为吸附剂了。加热到100~110℃时即可除去水,恢复吸附活力,这一过程称为硅胶的活化。吸附特点:对极性物质的亲和力强于弱极性物质。溶剂极性弱,吸附剂对溶质吸附力强,溶剂极性增强,吸附剂对溶质吸附力弱。溶质被硅胶、氧化铝吸附,当加入极性较强的溶剂时,又可被后者置换洗脱下来第23页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂避免化学吸附,分离酸性物质,如分离醌类宜用硅胶,分离碱性物质宜用氧化铝。缓解化学吸附:如在薄层层析分离酸性(碱性)物质时,往往要加入适量的醋酸(氨、乙二胺)以克服拖尾现象。判断物质极性方法:各官能团的极性顺序;化合物的极性由分子中官能团的种类、数目、及排列方式等综合因素决定;溶剂的极性可根据介电常数(ε)的大小判断。

第24页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂沸石分子筛:一种水合结晶硅酸盐或硅铝酸盐,具有均匀微孔,孔径与分子大小相当,由于其孔径可用来筛分大小不同的分子,称为沸石分子筛、分子筛沸石或分子筛。分子筛有多种类型,但均具有独特的规整晶体结构,具有发达的微孔和较大的比表面积;它表面具有较强的酸中心(部分具有碱中心)种类:A,X,Y,ZSM-5,丝光沸石等

第25页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂第26页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂原料混合搅拌成胶成核晶化洗涤分离干燥脱水除模板剂白色粉末离子交换干燥焙烧

图2水热法制备沸石分子筛过程影响因素:化学组成硅铝比碱度水量模板剂量种类晶化条件

温度时间第27页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂沸石分子筛性能:吸附物性:具有很高的吸附量和独特的择形吸附性能—干燥剂和吸附剂。离子交换性:沸石骨架带电荷,平衡阳离子可以交换并产生酸中心或碱中心—催化剂。孔道择形性:孔结构可裁剪和调变—择形催化剂。再生性能:吸附剂或催化剂失活后可重现。第28页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂沸石分子筛的应用:主要用于分离和催化,分离领域主要是干燥脱水(干燥剂)和吸附分离(吸附剂)。在催化领域,其本身做催化剂或作为催化剂的载体,主要应用与石油炼制与加工、芳烃择型转化与合成、精细有机化学品合成。第29页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂碳分子筛:一种兼具有活性炭和分子筛特性的碳质吸附剂,非极性吸附剂,孔径分布均一,和气体分子直径相当(0.3-1nm),种类:富氢碳分子筛和富氮碳分子筛,两者的机理不同,主要用于空气富氮,氧氮在碳分子筛上的平衡吸附量相近,但吸附扩散速率相差很大,氧吸附扩散速率快,而氮的吸附扩散速率慢,空气通过碳分子筛时,由于氧的吸附速率快,优先进入分子筛孔道被吸附,从而得到富氮产品。富氢碳分子筛主要根据吸附量的大小进行分离。第30页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂聚酰胺:属于氢键吸附,不但适用极性物质也适用于非极性物质的分离。特别适合酚类、醌类、黄酮类等的分离。吸附规律:被分离物质与聚酰胺形成氢键的的数目越多,吸附力越强。分子内氢键:被分离物质形成分子内氢键的吸附力减弱。芳香程度:分子中芳香程度化高者,吸附力强。

第31页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂大孔吸附树脂:大孔吸附树脂是一种没有可解离基团具有大孔结构的高分子吸附剂。分为非极性与中等极性两类。。吸附原理:

吸附性与分子筛原理相结合的分离材料。影响规律:

大孔吸附树脂的特性、被分离物质及溶剂的性质均影响着分离结果。具体影响因素如下:

第32页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂分子极性

极性大成分——易被极性树脂吸附,被分离成分与大孔树脂形成氢键的基团越多,吸附力越强,极性大的有机溶剂合适。

极性小的成分——易被非极性树脂附,极性小洗脱剂,洗脱能力强。分子体积对非极性大孔树脂而言,化合物体积越大,吸附力越强,这与大体积分子的疏水性有关。

型号选择:分离大分子,大孔的树脂;分离小分子,小孔的树脂溶液的pH

酸(碱)性化合物——适当的酸(碱)性溶液中吸附;

中性化合物——中性溶液中可被充分吸附洗脱剂

水、醇类、丙酮、乙酸乙酯等。第33页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂除此之外,还有一些以上述吸附剂为载体的改性吸附剂,在载体上负载一些金属氧化物,主要用于一些特殊的分离体系,提高吸附剂的吸附容量及选择性。

第34页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂吸附剂性能测试:各种吸附剂在工业装置应用前均需对某些物理性能进行测试,在得到有关参数后,才能在设计装置时得到最佳效果,吸附剂的主要测试指标:密度:(填充密度,颗粒密度,真实密度)

填充密度:又称堆密度,用测定容器(1~2L的量筒),将干吸附剂充实到体积不变时,加入吸附剂与测定容器体积之比。颗粒密度:单位体积吸附剂颗粒本身的质量,用汞置换法测定。真实密度:表示扣除了细孔体积之后单位体积吸附剂的质量,通常用氦、水、有机溶剂置换法测定。第35页,共112页,2022年,5月20日,21点14分,星期四吸附原理和吸附剂孔径及孔径分布:吸附剂的孔径大小及分布,在吸附剂对流体各组分的选择吸附方面起重要作用,各吸附剂孔径变化范围很大,常用平均孔径表示。测定方法:气体吸附法:半径1-10nm的孔径分布及细孔体积压汞法:测定半径10nm以上孔比表面积:表征吸附剂性能重要参数,测定采用容量法和动态法吸附量:评价和选择吸附剂的重要参数,分为静态吸附量和动态吸附量第36页,共112页,2022年,5月20日,21点14分,星期四吸附平衡:

一定条件下,当吸附剂和流体混合物相接触时,流体中吸附质被吸附剂吸附,经过足够长的时间,吸附质在两相中的含量达到恒定值,称为吸附平衡,此时吸附量为平衡吸附量。描述平衡吸附量和吸附温度和压力的关系称为吸附曲线,吸附曲线主要有两种形式,吸附等温线和吸附等压线。吸附等温线:一定温度下吸附量和压力的关系。吸附等压线:一定压力下和吸附温度的关系。吸附等温线最为常用,是描写吸附过程最常用的基础数据。吸附平衡和吸附速率第37页,共112页,2022年,5月20日,21点14分,星期四吸附平衡和吸附速率图3五种类型的吸附等温线第38页,共112页,2022年,5月20日,21点14分,星期四等温线形式:Ⅰ、朗格缪尔型吸附等温线

单分子层吸附等温线,在压力较低时,吸附量就较大,在相对压力较大时,有吸附饱和现象,发生在浓度较低时的吸附和孔径小于2-3nm时的吸附。Ⅱ、反S型吸附等温线

完成单分子层吸附后,再形成多分子层吸附的等温线,发生在孔径大于5nm孔吸附,没有吸附饱和现象。吸附平衡和吸附速率第39页,共112页,2022年,5月20日,21点14分,星期四吸附平衡和吸附速率Ⅲ、反朗格缪尔型吸附等温线,

在压力较低的初始阶段,吸附量很低,在高压下,有较高的吸附能力,没有吸附饱和现象。同样属于多分子层吸附,形式少见。Ⅳ吸附等温线

和Ⅱ型相对应,在相对压力高时出现吸附饱和现象。Ⅴ吸附等温线

和Ⅲ型相对应,在相对压力高时出现吸附饱和现象。

五类吸附等温线中,第Ⅰ类吸附等温线最为常见,常见气体在分子筛,活性氧化铝,硅胶等吸附剂上的吸附等温线都为第Ⅰ类吸附等温线.第40页,共112页,2022年,5月20日,21点14分,星期四

在平衡条件下,吸附物质的多少可用吸附量表示。气体在单位重量吸附剂表面上的吸附量V依赖于气体的性质、固体表面的性质、吸附平衡的温度T及吸附质平衡压力p等。当给定了吸附剂、吸附质及吸附平衡温度后,则吸附量V就只是吸附质平衡压力p的函数;或者给定吸附剂、吸附质及吸附平衡的压力时,则吸附量V就只是吸附平衡温度T的函数。表示吸附平衡的状态参数有吸附量、平衡温度和压力。平衡关系吸附平衡和吸附速率吸附等温线方程第41页,共112页,2022年,5月20日,21点14分,星期四可表示为等温条件下吸附量和压力间的关系(吸附等温线);等压条件下吸附量和温度间的关系(吸附等压线或吸附等压方程)。通常用吸附等温线来表示吸附平衡关系。1.单组分气体在固体上的吸附平衡(1)朗缪尔(Langmuir)方程此方程是最早提出的描述吸附现象的关系式。该方程是基于假设固体表面是均匀的,单分子吸附平衡和吸附速率第42页,共112页,2022年,5月20日,21点14分,星期四层吸附,且被吸附分子间无相互作用力而推导出来的。在这些假设条件下的吸附为理想吸附。以表示每秒钟内碰撞在单位固体表面上的分子数;以表示撞击的分子中被固体表面吸附的分数;表示固体表面被分子覆盖的分数;则1-代表未覆盖的分数。代表根据朗缪尔理论,只有碰撞在固体表面上的分子才被吸附,而碰撞在已经吸附的分子上时,则不被吸附。这样每秒内吸附的分子为(1-)。脱附速率与被覆盖表面的比率成正比,所以脱附速率为(为=吸附平衡和吸附速率第43页,共112页,2022年,5月20日,21点14分,星期四1时的脱附速率)。在吸附平衡时,吸附速率=脱附速率,即(1-)=故:由玻尔兹曼(Boltzmann)理论可知:式中,m为相对分子质量;k为玻尔兹曼常量;(1)第44页,共112页,2022年,5月20日,21点14分,星期四T为热力学温度;p为气体压力。令:带入式(1)得如以Vm表示表面覆盖满时(=1)的吸附量,V表示气体压力为p时的吸附量,则表面覆盖分数为:故(2)第45页,共112页,2022年,5月20日,21点14分,星期四即:上式即为朗缪尔吸附等温线方程式。当温度恒定时,以V对相对压力p/p0作曲线(p0为该温度下,吸附质的饱和蒸汽压)即为吸附等温线。该方程形式简单,物理意义明确,应用最广泛。(2)弗罗因德利希(Freundlich)方程等温吸附的表达式为:式中,V为吸附量;p为吸附平衡压力;n,k为常数(3)(4)第46页,共112页,2022年,5月20日,21点14分,星期四对式(4)两边取对数得:因而在对数坐标上以V和p作图,便可得一条直线。直线斜率为1/n。该方程系纯经验方程,没有明确的物理意义。但由于形式简单,使用方便,因而得到较多的应用。(3)BET方程

该方程由布鲁楞勒(Brunaner)、埃麦特(Emmett)和泰勒(Teller)三人提出。他们假设:固体表面是均匀的,被吸附分子见无相互作用力,(5)第47页,共112页,2022年,5月20日,21点14分,星期四可以有多层分子吸附而层间作用力为范德华力,第一层的吸附热为物理吸附热,第二层以上的为液化热,总吸附量为各层吸附量的总和。依据此原理导出的BET吸附等温线方程为BET二常数吸附等温线方程,即:式中:p为平衡压力;V为在p下的吸附量;Vm为第一层覆盖满时所吸附的量;C为与吸附热有关的常数;(6)第48页,共112页,2022年,5月20日,21点14分,星期四P0为实验温度下的饱和蒸汽压。

BET二常数方程的适用条件为固体表面是平滑的,吸附层数可以是无穷多的。当固体表面为多孔、吸附层数限制到n层时,则方程变为:上式为三常数BET方程。式中x=p/p0,称为相对压力。当n=1时,此式就变为朗缪尔方程;当n时,即成为二常数BET方程。BET方程的适用范围较朗缪尔方程广。(7)第49页,共112页,2022年,5月20日,21点14分,星期四吸附速率

吸附平衡表达了吸附过程进行的极限。但要达到平衡往往要经过相当长时间的接触,在实际吸附操作中相际接触的时间一般是有限的,因此,吸附量决定于吸附速率,而吸附速率又根据吸附剂与吸附质的性质不同而有很大差别。 一个具体吸附过程包括几个步骤,其中每一步骤的速度都将不同程度地影响总吸附速率,所以总吸附速率是一个综合结果。一般我们将速度最慢的步骤称为控制步骤。吸附平衡和吸附速率第50页,共112页,2022年,5月20日,21点14分,星期四吸附、脱附过程示意图被吸附分子(1)(2)(3)(4)(5)(6)微孔道吸附剂液膜(气膜)液(气)相主体(1)外扩散(2)内扩散(3)吸附(4)脱附(5)内反扩散(6)外反扩散吸附平衡和吸附速率第51页,共112页,2022年,5月20日,21点14分,星期四

在这些步骤里,吸附与脱附的速度远比外扩散与内扩散为快,因此一般影响吸附速率的是外扩散速率与内扩散速率。 吸附质A外扩散的传质速率 吸附质A内扩散的传质速率式中,ky,kx为外扩散、内扩散吸附分系数;p为吸附剂颗粒的外表面;yA,yAi为吸附质A在流(8)(9)第52页,共112页,2022年,5月20日,21点14分,星期四体中及在界面处的浓度;xA,xAi为吸附质A在固相内表面及界面的浓度。 由于外表面(界面)的浓度不易测定,吸附速率也常用吸附总系数来表示。式中,Ky,Kx分别为流体相及吸附相传质总系数。由于其中,f为平衡常数。吸附平衡和吸附速率(9)(10)第53页,共112页,2022年,5月20日,21点14分,星期四则可得:当ky>>kx/f时,则Ky=kx/f,即外扩散阻力可以忽略不计,吸附阻力以内扩散的阻力为主;反之,当ky<<kx/f时,则Ky=ky,即内扩散阻力可忽略不计。(12)(11)吸附平衡和吸附速率第54页,共112页,2022年,5月20日,21点14分,星期四吸附分离分类吸附分离分类固定床吸附分离流化床吸附分离移动床吸附分离模拟移动床吸附分离色谱吸附分离第55页,共112页,2022年,5月20日,21点14分,星期四固定床吸附分离:固定床吸附分离是常见的吸附分离工艺,吸附器多为圆柱形立式设备,在内部支撑的格板或多孔板上,放置吸附剂成为吸附剂床层,当流体通过时,吸附质被吸附在吸附剂上,其余流体由出口流出,固定床吸附器特点:优点:结构简单,造价低,吸附剂磨损少缺点:间歇操作,吸附和再生周期更换,配置较多阀门,操作麻烦。床层导热性差,床层温差变化大,易导致局部过热。变压吸附和变温吸附都属于固定床吸附分离。吸附分离分类第56页,共112页,2022年,5月20日,21点14分,星期四固定床吸附器流程示意图吸附操作过程(二床操作):原料气干燥过程:当干燥器A在操作时,原料气由下方通入(通干燥气B的阀关闭),经干燥后的原料气由顶部出口排出;同时,干燥器B处于再生阶段,再生用气体经加热器加热到指定温度,从顶部进入干燥器B,再生气携带吸附剂上脱附的水分从干燥器底部排出,经冷却器降温分离出水后循环使用。吸附分离分类第57页,共112页,2022年,5月20日,21点14分,星期四流化床吸附分离:流化床分离也是吸附分离工艺之一,主体设备为双体流化床,由吸附单元和脱附单元组成含有吸附质的流体由吸附床底部进入,由下而上流动,使向下流动的吸附剂流态化,净化后的流体由吸附塔顶排出,吸附了吸附质的吸附剂由吸附塔底部排出进入脱附单元顶部,在脱附单元,用加热吸附剂或其他方法使吸附剂再生解吸,再生吸附剂返回流化床顶部继续进行吸附过程。吸附分离分类第58页,共112页,2022年,5月20日,21点14分,星期四流化床吸附器特点:优点:可连续操作,适合处理大量流体吸附剂处于流化状态流体近似活塞流,吸附剂利用率比较高缺点:吸附剂磨损比较大,操作弹性窄设备相对复杂,费用高目前很少使用吸附分离分类第59页,共112页,2022年,5月20日,21点14分,星期四移动床吸附分离(超吸附器):左图为移动床设备示意图,冷却段:(脱附后的吸附剂被冷却)吸附段:(吸附剂与混合气接触)增浓段:(上来的气体发生置换吸附)

汽提段:(吸附剂里的吸附质被气提)

加热段:(加热脱附)

各段用分隔板隔开吸附分离分类第60页,共112页,2022年,5月20日,21点14分,星期四吸附分离分类第61页,共112页,2022年,5月20日,21点14分,星期四移动床吸附分离:优点:在不高的温度和压力下操作,设备相对简单,能耗低连续操作,处理量大,缺点:吸附剂在床层内移动,吸附剂磨损大,易阻塞管路。床层移动过程中床层装填性能差目前,移动床已不在使用吸附分离分类第62页,共112页,2022年,5月20日,21点14分,星期四模拟移动床吸附分离:为了克服移动床实际应用中的不足,70年代出现一种新的吸附分离工艺,模拟移动床吸附分离,该工艺对吸附剂来说是不动的固定床,通过不断改变流体的进出口位置,达到吸附剂和流体相对运动目的,以此来模拟移动床的作用,从效果看,达到了移动床的效果,过程是连续的,但对床层来说本身并没有移动,所以称为模拟移动床。优点:床层固定,吸附剂磨损小,连续操作,处理量大,在石化工业,大规模的应用于C8芳烃的分离。吸附分离分类第63页,共112页,2022年,5月20日,21点14分,星期四模拟移动床操作示意图

旋转阀吸余液吸取液吸附分离分类第64页,共112页,2022年,5月20日,21点14分,星期四相对于其它吸附分离工艺,固定床吸附分离应用的更多一些。对于固定床吸附分离,当吸附过程进行到一定时间后,吸附剂表面被吸附质覆盖,从而使吸附能力逐渐降低,直到达到吸附平衡,此时吸附剂不再具有吸附能力,为了使吸附剂能够连续使用,吸附饱和后的吸附剂必须进行再生才能使用,再生过程又叫脱附过程。吸附分离分类第65页,共112页,2022年,5月20日,21点14分,星期四常用脱附方法:降压脱附:在吸附过程中吸附压力高,平衡吸附量大,当压力降低时吸附量变小,吸附组分脱附出来,这种再生方法在变压吸附分离过程中被广泛采用。升温脱附:吸附过程是一个放热过程,温度增加,吸附量减小,在低温下有较高的吸附能力。因而温度降低有利于吸附过程进行,升温有利于脱附的进行,因而在实际的吸附分离过程中,可在低温下进行吸附,吸附饱和后,吸附床层升高温度,吸附组分解吸出来,采用这种方法的吸附分离过程为变温吸附。常用脱附的方法第66页,共112页,2022年,5月20日,21点14分,星期四通气吹扫:吸附饱和后,将不被吸附剂吸附的惰性气体或吸附能力比较弱的气体通入吸附床层进行吹扫,降低了吸附质的分压,从而使吸附组分脱附。这种方式一般不单独使用。置换脱附:当吸附床层吸附饱和后,向床层通入另一种流体,当该流体吸附能力和被吸附物吸附能力相近时,这种组分就把前一种置换出来,当再通入混合物时,吸附组分又将置换物置换。工业上为了使吸附床层脱附的比较彻底,上述几种方法经常要综合利用,例如在变压吸附过程中,即采用降压又采用弱吸附能力的气体吹扫。在变温吸附分离过程中采用水蒸气或热空气吹扫。脱附的方法第67页,共112页,2022年,5月20日,21点14分,星期四变压吸附过程变压吸附和变温吸附吸附等温线:在同一温度下,吸附质在吸附剂上的吸附量随吸附质分压的上升而增加,在同一压力下,吸附质在吸附剂上的吸附量随吸附温度增加而减少。也就是说,加压降温有利于吸附质的吸附,而降压加温有利于吸附质的脱附。按照吸附剂的再生方法将吸附分离循环过程分为两类。变压吸附和变温吸附。组分A、B在不同温度下的吸附等温线吸附压力P第68页,共112页,2022年,5月20日,21点14分,星期四变压吸附:

变压吸附是在较高压力下进行吸附,在较低的压力下(有时甚至在真空压力下)使吸附组分解吸出来的循环操作。分离气体基本原理:利用吸附剂对不同气体在吸附量、吸附速度、吸附力等方面的差异,以及吸附剂的吸附容量随压力的变化而变化的特性,在加压条件下完成混合气体的吸附分离过程,降压脱附被分离吸附的各种组分,从而实现气体分离以及吸附剂循环使用的目的。变压吸附分离过程中吸附循环周期短,吸附热和解吸热引起的吸附床层温度变化小,看作等温过程。变压吸附过程第69页,共112页,2022年,5月20日,21点14分,星期四变压吸附特点低能耗:PSA工艺所要求的压力较低,一些有压力的气源可以省去再次加压的能耗。PSA在常温下操作,可以省去加热或冷却的能耗。产品纯度高且可灵活调节:如PSA制氢,产品纯度可达99.999%,并可随意调节氢的纯度。工艺流程简单:可实现多种气体的分离,对水、硫化物、氨、烃类等杂质有较强的承受能力,无需复杂的预处理工序。

变压吸附过程第70页,共112页,2022年,5月20日,21点14分,星期四装置调节能力强,操作弹性大:对原料气中杂质含量和压力等条件改变有很强的适应能力,调节范围很宽。投资小,操作费用低:维护简单,检修时间少,开工率高。

吸附剂使用周期长:一般可以使用十年以上。机组小:占地面积小。

环境效益好:除因原料气的特性外,PSA装置的运行不会造成新的环境污染,几乎无“三废”产生

变压吸附过程第71页,共112页,2022年,5月20日,21点14分,星期四变压吸附流程:在变压吸附分离过程中,由于吸附剂需要再生,为使吸附过程连续进行,工业上通常要采用两塔或更多的吸附塔轮换操作,变压吸附分离的常用流程主要有:双塔变压吸附,最简单的变压吸附分离过程,在吸附分离过程中吸附塔经历吸附,降压解吸和冲洗三步,主要用于空气分离等对回收率要求不高的场合。三塔变压吸附流程,吸附,降压解吸,真空解吸,三塔变压吸附流程主要用于吸附气是产品气的分离。变压吸附过程第72页,共112页,2022年,5月20日,21点14分,星期四四塔变压吸附流程,在变压吸附分离操作过程中,由于吸附剂床层不断吸附,减压,抽真空,使气体流量和压力波动大,而且吸附终了后,吸附床直接排空,浪费了大量的原料气,因而变压吸附向多床发展,四塔变压吸附是工业应用最多的装置,在分离过程中,吸附床依次经历吸附,均压,顺向放压,逆向放压,冲洗,一段充压和二段充压等步骤。十塔变压吸附流程,十塔流程是在四塔的基础上发展起来,用于处理大量的气体,操作步骤类似四塔流程。变压吸附过程第73页,共112页,2022年,5月20日,21点14分,星期四变压吸附的应用从各种含氢气源中提纯氢气;

从各种富含二氧化碳的气源中生产各种等级的气体或液体二氧化碳;

从富含一氧化碳的气源中提纯CO;

合成氨变换气脱除二氧化碳;

天然气的净化脱除C2及以上组份;

空气分离制富氧;

空气分离制富氮;

从煤矿瓦斯气中浓缩甲烷;

浓缩和提纯乙烯。

变压吸附过程第74页,共112页,2022年,5月20日,21点14分,星期四氢气用途合成氨石油炼制(催化加氢,油脂加氢等等)甲醇合成用于生产化学品:环己烷、甲苯脱烷基制苯、环己胺,环己醇,苯胺和甲基苯胺,对氨基苯酚,1,4-丁二醇,γ-丁内脂,四氢呋喃,双氧水等许多通过加氢反应合成的精细化工产品。冶金工业,作保护气光纤和石英玻璃生产氢能燃料电池变压吸附应用—回收H2第75页,共112页,2022年,5月20日,21点14分,星期四氢气的分离提纯

H2的分离回收是吸附分离应用最为广泛的一个领域,已广泛应用于合成氨工业,炼油工业,石油化工领域。

工业上含氢气源:一类是以煤、天然气、重油为原料造气或用甲醇、氨裂解制备的含氢气源;另一类为各种工业生产过程中产生的含氢尾气,如炼油厂含氢尾气、合成氨驰放气、碳黑尾气、DMF尾气、甲醛及甲醇尾气等。变压吸附应用—回收H2第76页,共112页,2022年,5月20日,21点14分,星期四几种回收氢气技术比较

项目膜分离变压吸附深冷分离规模/Nm3/h100~10000100~1000005000~100000氢纯度/V%80~9999~99.99990~99氢回收率/%75~8580~95最高98操作压力/MPa3~15或更高0.5~3.01.0~8.0压力降/MPa高,原料产品压0.10.2力比为2~6原料氢最小含量/%3015~2015原料的预处理需预处理可不预处理需预处理产品中CO含量原料气中CO的30%<10g/g

几百g/g操作弹性%20~10010~10050~100投资低低高能耗低低高操作难易简单简单较难变压吸附应用—回收H2第77页,共112页,2022年,5月20日,21点14分,星期四吸附分离使回收氢气有效方法之一应用行业领域

冶金行业:如用PSA法从焦炉气中提氢,

天然气、石脑油转化制氢中氢气提纯,

煤气化制氢中氢气提纯,

甲醇和氨分解制氢中氢气提纯,

石化行业:催化裂化干气,炼厂混合气,炼厂气含氢气体,乙烯尾气,催化裂化干气,甲醇弛放气,变换气,合成氨尾气。

变压吸附应用—回收H2第78页,共112页,2022年,5月20日,21点14分,星期四典型流程四塔二次均压流程吸附塔工作过程时序塔名123456789101112A塔吸附一均降顺放二均降逆放冲洗二均升一均升最终升压B塔一均升最终升压吸附一均降顺放二均降逆放冲洗二均升C塔逆放冲洗二均升一均升最终升压吸附一均降顺放二均降D塔一均降顺放二均降逆放冲洗二均升一均升最终升压吸附变压吸附应用—回收H2第79页,共112页,2022年,5月20日,21点14分,星期四变压吸附分离氢现状:分离回收氢气是PSA技术应用最大领域国外于1962年实现工业规模制氢1966年在Toronto在和水蒸气变换装置配套建立起的第一台工业用PSA氢气提纯装置后,进入70年代后,变压吸附技术获得了迅速的发展,装置数量剧增,规模不断增大,使用范围越来越广,工艺不断完善,成本不断下降,逐渐成为一种主要的、高效节能的气体分离技术。全世界PSA系统生产纯氢的能力超过1亿m3/h,最大PSA提氢装置的生产能力超过1.0×105Nm3/h,上千套装置在运行。变压吸附应用—回收H2第80页,共112页,2022年,5月20日,21点14分,星期四技术进展PSA提氢的工艺过程也由最初的四床一均一塔进料的简单过程发展到十床四均三塔同时进料的复杂过程吸附剂的使用也由一种吸附剂发展到根据原料气中组份的变化而装填多种吸附剂,吸附剂的再生方式也由产品氢气回流吹扫发展到真空解吸再生均压次数的增加,能量回收增加,同时也增加了产品气的回收率,强吸附组份的流动也因压力均衡步骤的增加而更加平稳变压吸附应用—回收H2第81页,共112页,2022年,5月20日,21点14分,星期四多床同时进料,提高了PSA装置处理原料气的能力,适应现代化工行业中大量氢气的需求。真空解吸的再生方式,借助外界动力使吸附剂上吸附的杂质组份充分解吸,不需要产品氢气回流吹扫吸附剂,因此产品氢气的收率可大大提高。PSA装置生产的氢气的纯度可达99.999%,并可在低于此纯度的范围内任意调整产品氢收率也由最初的四床一均工艺的70%~75%提高到多床多均工艺的80%~95%变压吸附应用—回收H2第82页,共112页,2022年,5月20日,21点14分,星期四国内现状变压吸附技术在我国的工业应用也有二十几年历史西南化工研究院最早开始从事变压吸附研究和规模最大的研究单位1972年,西南化工研究院开始从事变压吸附气体分离工作,并于1982年在上海吴凇化肥厂,用于从合成氨弛放气中回收氢气。石家庄炼油厂5×104Nm3/h催化裂化干气氢气提纯装置和镇海炼化股份有限公司6.0×104Nm3/h

氢气提纯装置是国产大型变压吸附装置。我校在吸附剂及变压吸附工艺过程开发也取得了巨大的成绩。变压吸附应用—回收H2第83页,共112页,2022年,5月20日,21点14分,星期四二氧化碳用途CO2是一种用途十分广泛且需求量很大的重要化工产品。

40%用作生产其它化工产品的原料(如尿素,碳铵,纯碱,碳酸钙,甲醇,一氧化碳和OTO合成气,水杨酸,碳酸乙(丙)烯酯等

35%用于提高石油采出率

10%用于制冷

5%用于碳酸饮料其它应用10%(保护气,灭火剂,CO2激光器,超临界萃取等)变压吸附应用—回收CO2第84页,共112页,2022年,5月20日,21点14分,星期四二氧化碳气源CO2资源十分丰富,广泛存在于大气,水和岩层中。天然CO2气田,开采天然气伴生CO2在煤炭,石油和碳酸盐的加工和燃烧过程中,也产生富含CO2气体。气体直接排放大气,既破坏生态环境,引起温室效应,又浪费了CO2宝贵资源。应当采用适当方法加以回收并加以利用变压吸附应用—回收CO2第85页,共112页,2022年,5月20日,21点14分,星期四常用CO2

气源及含量

序号CO2

来源含量,V%

1天然气田气80~90

2合成氨副产气98~99

3石油炼制副产气98~99

4发酵工业副产气95~99

5乙二醇工业副产气

91

6石灰窑尾气35~45

7炼钢副产气18~19

8燃煤锅炉烟道气18~21

9焦炭及重油燃烧气10~17

10天然气燃烧烟道气8.5~10变压吸附应用—回收CO2第86页,共112页,2022年,5月20日,21点14分,星期四二氧化碳分离提纯工艺

溶剂吸收法:

吸收工艺适用于气体中CO2含量较低的情况,CO2

浓度可达到99.99%。工艺投资费用大,能耗较高,分离回收成本高。低温蒸馏法:蒸馏工艺适用于高浓度的情况,如CO2

浓度为60%。该工艺的设备投资大,能耗高,分离效果差,成本也高。一般情况不太采用。膜分离法:膜分离法工艺较简单,操作方便,能耗低,经济合理,缺点是常常需要前级处理、脱水和过滤,且很难得到高纯度的CO2。但仍不失为一种较好的分离CO2

的方法。变压吸附法:可以从多种含CO2

的气源中分离提纯CO2,变压吸附回收二氧化碳技术于1986年实现工业化变压吸附应用—回收CO2第87页,共112页,2022年,5月20日,21点14分,星期四变压吸附回收CO2工艺三塔流程,解吸气为产品气,需要预处理除去水分和硫化物等强吸附物质。三塔操作过程时序表操作压力:0.5~1.0MPa,产品气纯度99.5~99.99%塔名123456789101112A塔吸附均压降顺向放压置换抽空均压升最终升压B塔均压升最终升压吸附均压降顺向放压置换抽空C塔均压降顺向放压置换抽空均压升最终升压吸附变压吸附应用—回收CO2第88页,共112页,2022年,5月20日,21点14分,星期四一氧化碳用途CO是C1化学重要的基础原料气,广泛用于甲酸,醋酸,草酸,光气,二甲基甲酰胺,二异氰酸酯等重要的化工产品的合成。高热值气体,用作工业燃料

随着现代工业发展,CO的工业需求量越来越大,从而对CO的生产技术提出了更高要求。工业上CO制备主要从各种含CO的混合气中分离提纯。CO提纯方法:传统方法:深冷法和溶液吸收法,这两种方法的预处理系统复杂,设备多,投资大,操作成本高,能耗高。变压吸附法:已逐渐取代传统方法变压吸附应用—回收CO第89页,共112页,2022年,5月20日,21点14分,星期四一氧化碳气源:黄磷尾气: CO 85~90%转炉气: CO 60~70%铜洗再生气:

CO 60~70%高炉气: CO 22~28%半水煤气: CO 26~30%水煤气: CO 35~39%电石尾气乙炔尾气,等等变压吸附应用—回收CO第90页,共112页,2022年,5月20日,21点14分,星期四变压吸附工艺采用化学吸附的CO专用铜系吸附剂的吸附工艺,混合气可在PSA装置内一步实现CO和CO2的分离,一步法工艺,流程简单,但目前还处于实验室研究和工业试运转阶段。另一类分离CO工艺是采用常规吸附剂(活性炭,细孔硅胶,活性氧化铝和分子筛等)的物理吸附PSA工艺,即二段法工艺,第一步脱除吸附能力较强的组分,第二步再从剩余混合气体中分离提纯CO。

我国变压吸附分离CO技术于1993年实现工业化,为高浓度CO的生产开创了一条新途径。变压吸附应用—回收CO第91页,共112页,2022年,5月20日,21点14分,星期四

变换气脱CO2是合成氨原料气净化的一个重要工序,主要方法有2种,湿法(溶剂吸收)和干法(变压吸附)。湿法:操作复杂,工序长,操作费用高,设备腐蚀。变压吸附脱CO2分为三种工艺:1、以增产液氨为目的脱除工艺,脱碳后净化气CO2含量小于0.2%,该工艺在脱除CO2的同时,CH4

、CO、硫化物等杂质也能脱除。变压吸附应用—合成氨变换气脱除CO2第92页,共112页,2022年,5月20日,21点14分,星期四2、用于与联醇生产配套,将脱碳净化气用于甲醇生产,该工艺在脱除CO2

的同时使CO的损失最少,对这类PSA脱碳装置,一般将脱碳气中CO2

含量控制在1%-5%的水平,还可将变换气中的硫化物、砷、氯、H2O,NH3等杂质同时脱除。3、与尿素生产配套工艺,该工艺要求在脱除CO2获得氮氢的同时,得到纯度大于98%的产品CO2气体,用于合成尿素。由于工艺的不同需要,变压吸附各吸附床的操作过程略有不同。但都需要真空解吸过程。变压吸附应用—合成氨变换气脱除CO2第93页,共112页,2022年,5月20日,21点14分,星期四

我国具有丰富的天然气资源,主要成分为甲烷,但通常含有少量的N2,CO2和甲烷同系物,同系物的存在将直接影响到以天然气为原料生产的化工产品质量,因此,以天然气为原料生产氯代产品、硫氧化碳及氰化钠等生产过程中,均对天然气中C2+

组份提出了净化要求。在天然气净化方面,变压吸附工艺能耗低、净化度高,是最为理想的途径。该工艺的CH4

收率一般在50%~70%,采用该工艺时应考虑解吸气的综合利用问题,如用作燃料等。变压吸附应用—天然气的净化脱除C2及以上组份第94页,共112页,2022年,5月20日,21点14分,星期四空气中N2

含78%,O2含21%,而浓度高的N2和O2具有广泛用途,需求量很大空气分离方法深冷分离变压吸附分离膜分离

后两种方法生产气体纯度相对低些,但对于中小规模,投资和成本上具有竞争力,适用于中小规模及对气体纯度要求不高的领域。变压吸附应用—空气分离制富氮富氧第95页,共112页,2022年,5月20日,21点14分,星期四富氧气体用途炼钢用电炉供氧:用于溶解铁和脱碳精炼废水处理:活性污泥处理废水,采用富氧曝气可提高水中氧浓度,提高处理效率纸浆漂白:氧气代替氯气漂白,可降低废水处理费用有色金属冶炼氧气燃烧炉:提高燃烧温度养鱼:养鱼池通过氧气曝气可提高水中溶解氧,提高鱼产量发酵:代替空气用于好气性发酵,提高效率石油化工:代替空气进行氧化反应,医疗保健用氧高原缺氧地区供氧等等变压吸附应用—空气分离制富氮富氧第96页,共112页,2022年,5月20日,21点14分,星期四富氮气体用途冶金工业:用作保护气,密封气,搅拌气石油和化工工业:用作置换气,清洗气,密封,检漏,保护气蔬菜水果保鲜:充氮气调法贮藏水果、蔬菜代替机械冷藏石油和天然气开采:随着油田的不断开采,一二级采油只能采出原始储量的30%,氮气作为强化采油气体注入,提高油层压力和和采出率食品,充氮包装其他各种用途的保护气

富氮和富氧具有广泛用途,但在许多场合,对气体纯度要求不高,规模也不大,采用深冷方法不经济,应寻找更为经济方法。变压吸附应用—空气分离制富氮富氧第97页,共112页,2022年,5月20日,21点14分,星期四变压吸附分离富氧吸附分离原理:选择性吸附,氧含量最高95%左右吸附剂:沸石分子筛,碳分子筛吸附流程:二、三床流程,常压解吸流程和真空解吸流程工艺条件:常压解吸流程:吸附压力0.2-0.6MPa,真空解吸流程:吸附压力0.0-0.1MPa,工艺过程:二床工艺:吸附,

均压降,冲洗,均压升等步骤三床工艺:吸附,

均压降,冲洗,真空解吸和均压升等步骤变压吸附应用—空气分离制富氮富氧第98页,共112页,2022年,5月20日,21点14分,星期四变压吸附分离富氮吸附分离原理:选择吸附原理和利用扩散速率差异进行分离,氮含量可高达99%以上。吸附剂:沸石分子筛(很少采用)和碳分子筛吸附流程:二床流程,加压吸附和常压活真空解吸流程工艺条件:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论