下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,,则向量在向量上的投影是()A. B. C. D.2.函数的图象可能是()A. B. C. D.3.已知函数,要得到函数的图象,只需将的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度4.如图,在平面四边形ABCD中,若点E为边CD上的动点,则的最小值为()A. B. C. D.5.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为.给出下列四个结论:①曲线有四条对称轴;②曲线上的点到原点的最大距离为;③曲线第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为;④四叶草面积小于.其中,所有正确结论的序号是()A.①② B.①③ C.①③④ D.①②④6.已知等比数列的前项和为,且满足,则的值是()A. B. C. D.7.执行如图所示的程序框图,则输出的()A.2 B.3 C. D.8.已知函数满足,当时,,则()A.或 B.或C.或 D.或9.甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为()A.8 B.7 C.6 D.510.已知函数,将的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图象向上平移个单位长度,得到函数的图象,若,则的值可能为()A. B. C. D.11.在平面直角坐标系中,若不等式组所表示的平面区域内存在点,使不等式成立,则实数的取值范围为()A. B. C. D.12.已知函数的图象在点处的切线方程是,则()A.2 B.3 C.-2 D.-3二、填空题:本题共4小题,每小题5分,共20分。13.设全集,,,则______.14.已知一组数据,1,0,,的方差为10,则________15.已知抛物线的对称轴与准线的交点为,直线与交于,两点,若,则实数__________.16.在二项式的展开式中,的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,函数.(Ⅰ)若在区间上单调递增,求的值;(Ⅱ)若恒成立,求的最大值.(参考数据:)18.(12分)已知函数,函数,其中,是的一个极值点,且.(1)讨论的单调性(2)求实数和a的值(3)证明19.(12分)已知函数,.(1)讨论函数的单调性;(2)已知在处的切线与轴垂直,若方程有三个实数解、、(),求证:.20.(12分)已知x,y,z均为正数.(1)若xy<1,证明:|x+z|⋅|y+z|>4xyz;(2)若=,求2xy⋅2yz⋅2xz的最小值.21.(12分)已知函数,设为的导数,.(1)求,;(2)猜想的表达式,并证明你的结论.22.(10分)已知矩阵不存在逆矩阵,且非零特低值对应的一个特征向量,求的值.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】
先利用向量坐标运算求解,再利用向量在向量上的投影公式即得解【题目详解】由于向量,故向量在向量上的投影是.故选:A【答案点睛】本题考查了向量加法、减法的坐标运算和向量投影的概念,考查了学生概念理解,数学运算的能力,属于中档题.2、A【答案解析】
先判断函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【题目详解】函数的定义域为,,该函数为偶函数,排除B、D选项;当时,,排除C选项.故选:A.【答案点睛】本题考查根据函数的解析式辨别函数的图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,结合排除法得出结果,考查分析问题和解决问题的能力,属于中等题.3、A【答案解析】
根据函数图像平移原则,即可容易求得结果.【题目详解】因为,故要得到,只需将向左平移个单位长度.故选:A.【答案点睛】本题考查函数图像平移前后解析式的变化,属基础题.4、A【答案解析】
分析:由题意可得为等腰三角形,为等边三角形,把数量积分拆,设,数量积转化为关于t的函数,用函数可求得最小值。详解:连接BD,取AD中点为O,可知为等腰三角形,而,所以为等边三角形,。设=所以当时,上式取最小值,选A.点睛:本题考查的是平面向量基本定理与向量的拆分,需要选择合适的基底,再把其它向量都用基底表示。同时利用向量共线转化为函数求最值。5、C【答案解析】
①利用之间的代换判断出对称轴的条数;②利用基本不等式求解出到原点的距离最大值;③将面积转化为的关系式,然后根据基本不等式求解出最大值;④根据满足的不等式判断出四叶草与对应圆的关系,从而判断出面积是否小于.【题目详解】①:当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;综上可知:有四条对称轴,故正确;②:因为,所以,所以,所以,取等号时,所以最大距离为,故错误;③:设任意一点,所以围成的矩形面积为,因为,所以,所以,取等号时,所以围成矩形面积的最大值为,故正确;④:由②可知,所以四叶草包含在圆的内部,因为圆的面积为:,所以四叶草的面积小于,故正确.故选:C.【答案点睛】本题考查曲线与方程的综合运用,其中涉及到曲线的对称性分析以及基本不等式的运用,难度较难.分析方程所表示曲线的对称性,可通过替换方程中去分析证明.6、C【答案解析】
利用先求出,然后计算出结果.【题目详解】根据题意,当时,,,故当时,,数列是等比数列,则,故,解得,故选.【答案点睛】本题主要考查了等比数列前项和的表达形式,只要求出数列中的项即可得到结果,较为基础.7、B【答案解析】
运行程序,依次进行循环,结合判断框,可得输出值.【题目详解】起始阶段有,,第一次循环后,,第二次循环后,,第三次循环后,,第四次循环后,,所有后面的循环具有周期性,周期为3,当时,再次循环输出的,,此时,循环结束,输出,故选:B【答案点睛】本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型.8、C【答案解析】
简单判断可知函数关于对称,然后根据函数的单调性,并计算,结合对称性,可得结果.【题目详解】由,可知函数关于对称当时,,可知在单调递增则又函数关于对称,所以且在单调递减,所以或,故或所以或故选:C【答案点睛】本题考查函数的对称性以及单调性求解不等式,抽象函数给出式子的意义,比如:,,考验分析能力,属中档题.9、B【答案解析】根据题意满足条件的安排为:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙);A(甲,丁)B(丙)C(乙);A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7种,选B.10、C【答案解析】
利用二倍角公式与辅助角公式将函数的解析式化简,然后利用图象变换规律得出函数的解析式为,可得函数的值域为,结合条件,可得出、均为函数的最大值,于是得出为函数最小正周期的整数倍,由此可得出正确选项.【题目详解】函数,将函数的图象上的所有点的横坐标缩短到原来的倍,得的图象;再把所得图象向上平移个单位,得函数的图象,易知函数的值域为.若,则且,均为函数的最大值,由,解得;其中、是三角函数最高点的横坐标,的值为函数的最小正周期的整数倍,且.故选C.【答案点睛】本题考查三角函数图象变换,同时也考查了正弦型函数与周期相关的问题,解题的关键在于确定、均为函数的最大值,考查分析问题和解决问题的能力,属于中等题.11、B【答案解析】
依据线性约束条件画出可行域,目标函数恒过,再分别讨论的正负进一步确定目标函数与可行域的基本关系,即可求解【题目详解】作出不等式对应的平面区域,如图所示:其中,直线过定点,当时,不等式表示直线及其左边的区域,不满足题意;当时,直线的斜率,不等式表示直线下方的区域,不满足题意;当时,直线的斜率,不等式表示直线上方的区域,要使不等式组所表示的平面区域内存在点,使不等式成立,只需直线的斜率,解得.综上可得实数的取值范围为,故选:B.【答案点睛】本题考查由目标函数有解求解参数取值范围问题,分类讨论与数形结合思想,属于中档题12、B【答案解析】
根据求出再根据也在直线上,求出b的值,即得解.【题目详解】因为,所以所以,又也在直线上,所以,解得所以.故选:B【答案点睛】本题主要考查导数的几何意义,意在考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
先求出集合,,然后根据交集、补集的定义求解即可.【题目详解】解:,或;∴;∴.故答案为:.【答案点睛】本题主要考查集合的交集、补集运算,属于基础题.14、7或【答案解析】
依据方差公式列出方程,解出即可.【题目详解】,1,0,,的平均数为,所以解得或.【答案点睛】本题主要考查方差公式的应用.15、【答案解析】
由于直线过抛物线的焦点,因此过,分别作的准线的垂线,垂足分别为,,由抛物线的定义及平行线性质可得,从而再由抛物线定义可求得直线倾斜角的余弦,再求得正切即为直线斜率.注意对称性,问题应该有两解.【题目详解】直线过抛物线的焦点,,过,分别作的准线的垂线,垂足分别为,,由抛物线的定义知,.因为,所以.因为,所以,从而.设直线的倾斜角为,不妨设,如图,则,,同理,则,解得,,由对称性还有满足题意.,综上,.【答案点睛】本题考查抛物线的性质,考查抛物线的焦点弦问题,掌握抛物线的定义,把抛物线上点到焦点距离与它到距离联系起来是解题关键.16、60【答案解析】
直接利用二项式定理计算得到答案.【题目详解】二项式的展开式通项为:,取,则的系数为.故答案为:.【答案点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)3.【答案解析】
(Ⅰ)先求导,得,已知导函数单调递增,又在区间上单调递增,故,令,求得,讨论得,而,故,进而得解;(Ⅱ)可通过必要性探路,当时,由知,又由于,则,当,,结合零点存在定理可判断必存在使得,得,,化简得,再由二次函数性质即可求证;【题目详解】(Ⅰ)的定义域为.易知单调递增,由题意有.令,则.令得.所以当时,单调递增;当时,单调递减.所以,而又有,因此,所以.(Ⅱ)由知,又由于,则.下面证明符合条件.若.所以.易知单调递增,而,,因此必存在使得,即.且当时,单调递减;当时,,单调递增;则.综上,的最大值为3.【答案点睛】本题考查导数的计算,利用导数研究函数的增减性和最值,属于中档题18、(1)在区间单调递增;(2);(3)证明见解析.【答案解析】
(1)求出,在定义域内,再次求导,可得在区间上恒成立,从而可得结论;(2)由,可得,由可得,联立解方程组可得结果;(3)由(1)知在区间单调递增,可证明,取,可得,而,利用裂项相消法,结合放缩法可得结果.【题目详解】(1)由已知可得函数的定义域为,且,令,则有,由,可得,可知当x变化时,的变化情况如下表:1-0+极小值,即,可得在区间单调递增;(2)由已知可得函数的定义域为,且,由已知得,即,①由可得,,②联立①②,消去a,可得,③令,则,由(1)知,,故,在区间单调递增,注意到,所以方程③有唯一解,代入①,可得,;(3)证明:由(1)知在区间单调递增,故当时,,,可得在区间单调递增,因此,当时,,即,亦即,这时,故可得,取,可得,而,故.【答案点睛】本题主要考查利用导数研究函数的单调性以及不等式的证明,属于难题.不等式证明问题是近年高考命题的热点,利用导数证明不等主要方法有两个,一是比较简单的不等式证明,不等式两边作差构造函数,利用导数研究函数的单调性,求出函数的最值即可;二是较为综合的不等式证明,要观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简或者进一步利用导数证明.19、(1)①当时,在单调递增,②当时,单调递增区间为,,单调递减区间为(2)证明见解析【答案解析】
(1)先求解导函数,然后对参数分类讨论,分析出每种情况下函数的单调性即可;(2)根据条件先求解出的值,然后构造函数分析出之间的关系,再构造函数分析出之间的关系,由此证明出.【题目详解】(1),①当时,恒成立,则在单调递增②当时,令得,解得,又,∴∴当时,,单调递增;当时,,单调递减;当时,,单调递增.(2)依题意得,,则由(1)得,在单调递增,在上单调递减,在上单调递增∴若方程有三个实数解,则法一:双偏移法设,则∴在上单调递增,∴,∴,即∵,∴,其中,∵在上单调递减,∴,即设,∴在上单调递增,∴,∴,即∵,∴,其中,∵在上单调递增,∴,即∴.法二:直接证明法∵,,在上单调递增,∴要证,即证设,则∴在上单调递减,在上单调递增∴,∴,即(注意:若没有证明,扣3分)关于的证明:(1)且时,(需要证明),其中∴∴∴(2)∵,∴∴,即∵,,∴,则∴【答案点睛】本题考查函数与倒导数的综合应用,难度较难.(1)对于含参函数单调性的分析,可通过分析参数的临界值,由此分类讨论函数单调性;(2)利用导数证明不等式常用方法:构造函数,利用新函数的单调性确定函数的最值,从而达到证明不等式的目的.20、(1)证明见解析;(2)最小值为1【答案解析】
(1)利用基本不等式可得,再根据0<xy<1时,即可证明|x+z|⋅|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,从而求出2xy⋅
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- INPAQ Company Profile 20220621一级代理分销经销KOYUELEC光与电子
- 2024年全球经济展望:疫情后的复苏与挑战
- 《青玉案元夕》教案革新:2024教育理念的融入
- 2024年视觉表达与创意呈现培训教程
- 《网络编程》课程设计要求
- 临床医学研究与实践新的投稿要求
- 经济应用文第四章测试
- 陈列在室外公共场所艺术品的合理使用
- 2024-2025高中生物科学方法微课一研究动物激素功能的“加法原理”和“减法原理”学案新人教版必修3
- 统考版2025届高考地理二轮复习专练16河流冲淤含解析
- 空气栓塞培训课件
- 数据治理与数据中台建设方案
- HG∕T 5248-2017 风力发电机组叶片用环氧结构胶粘剂
- 医院感染监测标准考试试题附有答案
- 高血压病三级预防策略 医学类模板 医学课件
- DL∕T 523-2017 化学清洗缓蚀剂应用性能评价指标及试验方法
- 食品营养学选择试题库(附参考答案)
- 北师大版二年级数学上册第五单元《2~5的乘法口诀》(大单元教学设计)
- 2024年入团知识考试题库及答案
- 肿瘤化疗导致的中性粒细胞减少诊治中国专家共识(2023版)解读
- 《新能源汽车概论》课件-6新能源汽车空调系统结构及工作原理
评论
0/150
提交评论