2021-2022学年安徽省铜陵市某学校数学高职单招试题(含答案)_第1页
2021-2022学年安徽省铜陵市某学校数学高职单招试题(含答案)_第2页
2021-2022学年安徽省铜陵市某学校数学高职单招试题(含答案)_第3页
2021-2022学年安徽省铜陵市某学校数学高职单招试题(含答案)_第4页
2021-2022学年安徽省铜陵市某学校数学高职单招试题(含答案)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年安徽省铜陵市某学校数学高职单招试题(含答案)一、单选题(20题)1.袋中装有4个大小形状相同的球,其中黑球2个,白球2个,从袋中随机抽取2个球,至少有一个白球的概率为()A.

B.

C.

D.

2.函数f(x)=的定义域是()A.(0,+∞)B.[0,+∞)C.(0,2)D.R3.把6本不同的书分给李明和张强两人,每人3本,不同分法的种类数为()A.

B.

C.

D.

4.椭圆9x2+16y2=144短轴长等于()A.3B.4C.6D.85.不等式组的解集是()A.{x|0<x<2}

B.{x|0<x<2.5}

C.{x|0<x<}

D.{x|0<x<3}

6.不等式-2x22+x+3<0的解集是()A.{x|x<-1}B.{x|x>3/2}C.{x|-1<x<3/2}D.{x|x<-1或x>3/2}7.A.{-3}

B.{3}

C.{-3,3}D.8.函数f(x)=log2(3x-1)的定义域为()A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)9.设集合,则A与B的关系是()A.

B.

C.

D.

10.若不等式x2+x+c<0的解集是{x|-4<x<3},则c的值等于()A.12B.-12C.11D.-1111.下列双曲线中,渐近线方程为y=±2x的是()A.x2-y2/4=1

B.x2/4-y2=1

C.x2-y2/2=1

D.x2/2-y2=1

12.已知向量a=(2,4),b=(-1,1),则2a-b=()A.(5,7)B.(5,9)C.(3,7)D.(3,9)13.A.(5,10)B.(-5,-10)C.(10,5)D.(-10,-5)14.在等差数列{an}中,若a3+a17=10,则S19等于()A.65B.75C.85D.9515.A.B.C.D.16.A.1B.8C.2717.函数f(x)=x2+2x-5,则f(x-1)等于()A.x2-2x-6

B.x2-2x-5

C.x2-6

D.x2-5

18.已知P:x1,x2是方程x2-2y-6=0的两个根,Q:x1+x2=-5,则P是Q的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件19.A.B.C.20.已知sin2α<0,且cosa>0,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(10题)21.22.展开式中,x4的二项式系数是_____.23.的展开式中,x6的系数是_____.24.等差数列{an}中,已知a4=-4,a8=4,则a12=______.25.26.不等式(x-4)(x+5)>0的解集是

。27.函数y=3sin(2x+1)的最小正周期为

。28.在等比数列{an}中,a5=4,a7=6,则a9=

。29.如图所示,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为____。30.在△ABC中,AB=,A=75°,B=45°,则AC=__________.三、计算题(10题)31.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.32.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.33.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.34.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.35.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。36.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.37.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。38.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2.39.在等差数列{an}中,前n项和为Sn,且S4=-62,S6=-75,求等差数列{an}的通项公式an.40.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.四、证明题(5题)41.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.42.△ABC的三边分别为a,b,c,为且,求证∠C=43.己知a=(-1,2),b=(-2,1),证明:cos〈a,b〉=4/5.44.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.45.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.五、综合题(5题)46.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.47.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.48.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.49.50.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)六、解答题(5题)51.给定椭圆C:x2/a2+y2/b2(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆已知椭圆C的离心率为/2,且经过点(0,1).(1)求椭圆C的方程;(2)求直线l:x—y+3=0被椭圆C的伴随圆C1所截得的弦长.52.已知等比数列{an},a1=2,a4=16.(1)求数列{an}的通项公式;(2)求数列{nan}的前n项和{Sn}.53.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。54.解不等式4<|1-3x|<755.

参考答案

1.D从中随即取出2个球,每个球被取到的可能性相同,因此所有的取法为,所取出的的2个球至少有1个白球,所有的取法为,由古典概型公式可知P=5/6.

2.Bx是y的算术平方根,因此定义域为B。

3.D

4.C

5.C由不等式组可得,所以或,由①可得,求得;由②可得,求得,综上可得。

6.D不等式的计算.-2x2+x+3<0,2x2-x-3>0即(2x-3)(x+1)>0,x>3/2或x<-1.

7.C

8.A函数的定义.由3x-1>0,得3x>1,即3x>30,∴x>0.

9.A

10.B

11.A双曲线的渐近线方程.由双曲线渐近线方程的求法知,双曲线x2-y2/4=1的渐近线方程为y=±2x

12.A平面向量的线性计算.因为a=(2,4),b=(-1,1),所以2a-b=(2×2-(-1),2×4-1)=(5,7).

13.B

14.D

15.A

16.C

17.Cf(x-1)=(x-1)2+2(x-1)-5=x2-2x+1+2x-2-5=x2-6,故选C。

18.A根据根与系数的关系,可知由P能够得到Q,而已知x1+x2=5,并不能推出二者是原方程的根,所以P是Q的充分条件。

19.C

20.D三角函数值的符号∵sin2α=2sinα.cosα<0,又cosα>0,∴sinα<0,∴α的终边在第四象限,21.-2/322.723.1890,24.12.等差数列的性质.根据等差数列的性质有2a8=a4+a12,a12=2a8-a4=12.25.-626.{x|x>4或x<-5}方程的根为x=4或x=-5,所以不等式的解集为{x|x>4或x<-5}。

27.

28.29.2/π。30.2.解三角形的正弦定理.C=180°-75°-45°=60°,由正弦定理得=AB/sinC=AC/sinB解得AC=2.

31.32.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

33.

34.

35.

36.

37.

38.39.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

40.41.证明:考虑对数函数y=lgx的限制知:当x∈(1,10)时,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx

(0,1)∴lgx-2<0A-B∴A<B

42.

43.

44.

45.∴PD//平面ACE.46.解:(1)斜率k

=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b

=4,此时r=4,圆的方程为(x-4)2

+(y-4)2=16当a=1时,b

=-1,此时r=1,圆的方程为(x-1)2

+(y+1)2=147.解:(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论