版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,,以点为圆心,小于的长为半径作圆弧,分别交于两点,再分别以为圆心,大于的长为半径作圆弧,两弧交于点,作射线交于点.若,则的度数为()A.150° B.140° C.130° D.120°2.小明家下个月的开支预算如图所示,如果用于衣服上的支是200元,则估计用于食物上的支出是()A.200元 B.250元 C.300元 D.3503.已知a﹣b=2,则a2﹣b2﹣4b的值为()A.2 B.4 C.6 D.84.以下列各组数为边长构造三角形,不能构成直角三角形的是()A.12,5,13 B.40,9,41 C.7,24,25 D.10,20,165.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.2.8 B. C.2.4 D.3.56.在的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A. B. C. D.7.在平面直角坐标系中,点关于轴对称的点的坐标是()A. B. C. D.8.若x没有平方根,则x的取值范围为()A.x为负数 B.x为0 C.x为正数 D.不能确定9.已知x2-ax+16可以写成一个完全平方式,则可为()A.4 B.8 C.±4 D.±810.下列运算正确的是()A. B.= C. D.11.如图,在△ABC中,AB=BC,顶点B在y轴上,顶点C的坐标为(2,0),若一次函数y=kx+2的图象经过点A,则k的值为()A. B.- C.1 D.-112.在下列四个图案中,是轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.若分式的值是0,则x的值为________.14.若P(a﹣2,a+1)在x轴上,则a的值是_____.15.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=50°,则∠BDA=________.16.如图,已知的两条直角边长分别为6、8,分别以它的三边为直径向上作三个半圆,求图中阴影部分的面积为______.17.如图AB∥CD,AB与DE交于点F,∠B=40°,∠D=70°,则∠E=______.18.写出点M(﹣2,3)关于x轴对称的点N的坐标_____.三、解答题(共78分)19.(8分)已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.20.(8分)如图,在中,于D(1)若,求的度数(2)若点E在AB上,EF//AC交AD的延长线于点F求证:AE=FE21.(8分)解二元一次方程组22.(10分)老师在黑板上书写了一个代数式的正确计算结果,随后用字母A代替了原代数式的一部分,如下:(1)求代数式A,并将其化简;(2)原代数式的值能等于吗?请说明理由.23.(10分)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:△DCF≌△DEB;(2)若DE=5,EB=4,AF=8,求AD的长.24.(10分)解不等式:(1)不等式(2)解不等式组:并将,把解集表示在数轴上25.(12分)如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点(端点除外),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,(1)求证:△ABQ≌△CAP;(2)∠CMQ的大小变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)连接PQ,当点P、Q运动多少秒时,△APQ是等腰三角形?26.如图,已知点B、F、C、E在一条直线上,BF=EC,AB∥ED,AB=DE.求证:∠A=∠D.
参考答案一、选择题(每题4分,共48分)1、A【分析】利用基本作图得AH平分∠BAC,再利用平行线的性质得∠BAC=180°−∠C=60°,所以∠CAH=∠BAC=30°,然后根据三角形外角性质可计算出∠AHD的度数.【详解】解:由作法得AH平分∠BAC,则∠CAH=∠BAH,∵AB∥CD,∴∠BAC=180°−∠C=180°−120°=60°,∴∠CAH=∠BAC=30°,∴∠AHD=∠CAH+∠C=30°+120°=150°.故选:A.【点睛】本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行线的性质.2、C【解析】试题分析:先求出总支出,再根据用于食物上的支出占总支出的30%即可得出结论.解:∵用于衣服上的支是200元,占总支出的20%,∴总支出==1000(元),∴用于食物上的支出=1000×30%=300(元).故选C.考点:扇形统计图.3、B【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a﹣b=2,∴原式=(a+b)(a﹣b)﹣1b=2(a+b)﹣1b=2a+2b﹣1b=2(a﹣b)=1.故选:B.【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.4、D【分析】根据勾股定理的逆定理,一个三角形的三边满足两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形,据此即可判断.【详解】A、因为,故能构成直角三角形,此选项错误;B、因为,故能构成直角三角形,此选项错误;C、因为,故能构成直角三角形,此选项错误;D、因为,故不能构成直角三角形,此选项正确;故选:D.【点睛】本题考查勾股定理的逆定理,关键知道两条较小边的平方和等于较大边的平方,这个三角形就是直角三角形.5、B【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH的长.【详解】解:如图,延长BG交CH于点E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,,故选:B.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.6、D【解析】直接利用轴对称图形的定义判断得出即可.【详解】解:A.是轴对称图形,不合题意;B.是轴对称图形,不合题意;C.是轴对称图形,不合题意;D.不是轴对称图形,符合题意;故选:D.【点睛】本题主要考查轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.7、C【分析】直接利用关于y轴对称点的性质得出答案.【详解】解:点(4,-2)关于y轴对称的点的坐标是:(-4,-2).
故选:C.【点睛】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的符号是解题关键.8、A【分析】根据平方根的定义即可求出答案,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.【详解】解:∵负数没有平方根,∴若x没有平方根,则x的取值范围为负数.故选:A.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根.9、D【分析】完全平方公式是两数的平方和加减两数积的2倍,注意符合条件的a值有两个.【详解】解:∵x2-ax+16可以写成一个完全平方式,
∴,解得:.
故选:D.【点睛】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.10、B【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.【详解】A.x3•x4=x7,故本选项不合题意;B.(x3)4=x12,正确,故本选项符合题意;C.x6÷x2=x4,故本选项不合题意;D.(3b3)2=8b6,故本选项不合题意.故选:B.【点睛】此题考查同底数幂的乘除法运算法则,幂的乘方运算,正确掌握运算法则是解题关键.11、C【解析】先根据等腰三角形的性质求出点A的坐标,再把顶点A的坐标代入一次函数y=kx+2,求出k的值即可.【详解】解:∵AB=BC,∴△ABC是等腰三角形,∵等腰三角形ABC的顶点B在y轴上,C的坐标为(2,0),∴A(-2,0),∵一次函数y=kx+2的图象经过点A,∴0=-2k+2,解得k=1,故选C.【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.12、C【解析】轴对称图形的概念:一个图形沿一条直线折叠,直线两旁的图形能够完全重合的图形叫做轴对称图形.根据轴对称图形的概念不难判断只有C选项图形是轴对称图形.故选C.点睛:掌握轴对称图形的概念.二、填空题(每题4分,共24分)13、3【分析】根据分式为0的条件解答即可,【详解】因为分式的值为0,所以∣x∣-3=0且3+x≠0,∣x∣-3=0,即x=3,3+x≠0,即x≠-3,所以x=3,故答案为3【点睛】本题考查分式值为0的条件:分式的分子为0,且分母不为0,熟练掌握分式值为0的条件是解题关键.14、﹣1【分析】直接利用x轴上点的坐标特点得出a+1=0,进而得出答案.【详解】解:∵P(a﹣2,a+1)在x轴上,∴a+1=0,解得:a=﹣1.故答案为:﹣1.【点睛】本题主要考查坐标轴上点的特征,掌握坐标轴上点的特征是解题的关键.15、25º【分析】由平行四边形的性质和折叠的性质可得AD∥BC,∠BDA=∠BDG,即可求解.【详解】∵将平行四边形ABCD沿对角线BD折叠,∴AD∥BC,∠BDA=∠BDG,∴∠1=∠ADG=50°,且∠ADG=∠BDA+∠BDG,∴∠BDA=25°,故答案为:25°.【点睛】本题考查了翻折变换,折叠的性质,平行四边形的性质,灵活运用折叠的性质是本题的关键.16、1【分析】先分别求出以6、8为直径的三个半圆的面积,再求出三角形ABC的面积,阴影部分的面积是三角形ABC的面积加以AC为直径和以BC为直径的两个半圆的面积再减去以AB为直径的半圆的面积.【详解】解:由勾股定理不难得到AB=10以AC为直径的半圆的面积:π×(6÷2)2×=π=4.5π,以BC为直径的半圆的面积:π×(8÷2)2×=8π,以AB为直径的半圆的面积:π×(10÷2)2×=12.5π,三角形ABC的面积:6×8×=1,阴影部分的面积:1+4.5π+8π−12.5π=1;故答案是:1.【点睛】本题考查了勾股定理的运用,解答此题的关键是,根据图形中半圆的面积、三角形的面积与阴影部分的面积的关系,找出对应部分的面积,列式解答即可.17、30°【详解】解∵AB∥CD,∴∠D=∠AFE,∵∠D=70°,∴∠AFE=70°,∵∠B=40°,∠E=∠AFE-∠B=30°.故答案为:30°.【点睛】本题考查了平行线性质定理;三角形外角性质,了解三角形一个外角等于和它不相邻的两个内角的和是解题的关键.18、(-2,-3)【解析】解:根据平面直角坐标系内关于x轴对称,纵坐标互为相反数,横坐标不变,∴点M(-2,3)关于y轴的对称点为(-2,-3).三、解答题(共78分)19、1【分析】先根据平方根,立方根的定义列出关于a、b的二元一次方程组,再代入进行计算求出1a-5b+8的值,然后根据立方根的定义求解.【详解】∵2a+1的平方根是±3,3a+2b-1的立方根是-2,
∴2a+1=9,3a+2b-1=-8,
解得a=1,b=-8,
∴1a-5b+8=1×1-5×(-8)+8=61,
∴1a-5b+8的立方根是1.【点睛】此题考查平方根,立方根的定义,列式求出a、b的值是解题的关键.20、(1)50°;(2)见解析【分析】(1)根据等腰三角形的性质得到∠BAD=∠CAD,根据设∠C=2x,∠BAC=5x,根据三角形的内角和求出x,即可得到结果;(2)根据等腰三角形的性质得到∠BAD=∠CAD根据平行线的性质得到∠F=∠CAD,等量代换得到∠BAD=∠F,于是得到结论.【详解】解:(1)∵AB=AC,AD⊥BC于点D,
∴∠BAD=∠CAD,∠ADC=∠ADB=90°,∵,设∠C=2x,∠BAC=5x,则∠B=2x,则2x+2x+5x=180,解得:x=20,∴∠BAC=100°,∴∠BAD=50°;(2)∵AB=AC,AD⊥BC于点D,
∴∠BAD=∠CAD,
∵EF∥AC,
∴∠F=∠CAD,
∴∠BAD=∠F,
∴AE=FE.【点睛】本题考查了等腰三角形的性质,平行线的性质,正确的识别图形是解题的关键.21、,.【分析】利用加减消元法求解可得.【详解】,①+②,得,,把代入②,得,解得,所以原方程的解为.【点睛】本题主要考查解二元一次方程组,熟练掌握解二元一次方程组的两种消元方法是解题的关键.22、(1)A=;(2)不能,理由见解析.【解析】(1)根据题意得出A的表达式,再根据分式混合运算的法则进行计算即可;
(2)令原代数式的值为-1,求出x的值,代入代数式中的式子进行验证即可.【详解】(1),(2)不能,理由:若能使原代数式的值能等于﹣1,则,即x=0,但是,当x=0时,原代数式中的除数,原代数式无意义.所以原代数式的值不能等于﹣1.【点睛】考查分式的化简求值,掌握分式的运算法则是解题的关键.23、(1)见解析;(2)AD=1.【分析】(1)先利用角平分线的性质定理得到DC=DE,再利用HL定理即可证得结论.(2)由△DCF≌△DEB得CD=DE=5,CF=BE=4,进而有AC=12,在Rt△ACD中,利用勾股定理即可解得AD的长.【详解】(1)∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DC=DE,在Rt△DCF和Rt△DEB中,,∴Rt△DCF≌Rt△DEB(HL);(2)∵△DCF≌△DEB,∴CF=EB=4,∴AC=AF+CF=8+4=12,又知DC=DE=5,在Rt△ACD中,AD=.【点睛】本题考查了角平分线的性质定理、全等三角形的判定与性质、勾股定理,熟练掌握角平分线的性质定理和HL定理证明三角形全等是解答的关键.24、(1);(2),作图见解析【分析】(1)按照解一元一次不等式的基本步骤求解即可;(2)先分别求解不等式,再在数轴上画出对应解集,最终写
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度碎石场环保设备购置合同2篇
- 2024年中国球磨机配件市场调查研究报告
- 2025年度展台搭建与展览策划一体化服务合同3篇
- 公益岗位用工协议(2025年度)执行责任书3篇
- 二零二五年度农副产品品牌推广与广告投放合同3篇
- 2024年沁阳市人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2025年度消防控制系统设计与安装合同2篇
- 2024年喷涂塑钢钢衬项目可行性研究报告
- 《基于单目视觉移动机器人的避障研究》
- 2024年单相感应马达项目可行性研究报告
- AI在药物研发中的应用
- 建立信息共享和预警机制
- 美容外外科管理制度
- 苯-甲苯分离精馏塔化工原理课程设计
- 国企人力资源岗位笔试题目多篇
- 病毒 课件 初中生物人教版八年级上册(2023~2024学年)
- JGT129-2017 建筑门窗五金件 滑轮
- 三年级科学上册水和空气复习课教案
- 全国普通高校本科专业目录(2023版)
- 助产学导论学习通章节答案期末考试题库2023年
- 宁波大学“一页开卷”考试专用纸
评论
0/150
提交评论