正交实验设计原理-_第1页
正交实验设计原理-_第2页
正交实验设计原理-_第3页
正交实验设计原理-_第4页
正交实验设计原理-_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

正交实验设计1.概述任何生产部门,任何科学实验工作,为达到预期目的和效果都必须恰当地安排实验工作,力求通过次数不多的实验认识所研究课题的基本规律并取得满意的结果。例如为拟定一个正确而简便的分析方法,必然要研究影响这种分析方法效果的种种条件,诸如试剂浓度和用量、溶液酸度、反应时间以及共存组分的干扰等等。同时,对于影响分析效果的每一种条件,还应通过试验选择合理的范围。在这里,我们把受到条件影响的反系方法的准确度、精密度以及方法的效果等叫做指标;把试验中要研究的条件叫做因素;把每种条件在试验范围内的取值(或选取的试验点)叫做该条件的水平。这就是说我们常常遇到的问题可能包括多种因素,各种因素又有不同的水平,每种因素可能对分析结果产生各自的影响,也可能彼此交织在一起而产生综合的效果。正交试验设计就是用于安排多因素实验并考察各因素影响大小的一种科学设计方法。它始于 1942年,之后在各个领域里都得到很快的发展和广泛应用。这种科学设计方法是应用一套已规格化的表格——正交表来安排实验工作,其优点是适合于多种因素的实验设计,便于同时考查多种因素各种水平对指标的影响通过较少的实验次数,选出最佳的实验条件,即选出各因素的某一水平组成比较合适的条件,这样的条件就所考查的因素和水平而言,可视为最佳条件。另一方面,还可以帮助我们在错综复杂的因素中抓住主要因素,并判断那些因素只起单独的作用,那些因素除自身的单独作用外,它们之间还产生综合的效果。数理统计上的实验设计还能给出误差的估计。试验设计的基本方法全面试验法正交设计的方法,首先应根据实验的目的 ,确定影响实验结果的各种因素, 选择这些影响因素的试验点,进而拟出实验方案,之后按所拟方案进行实验并对实验结果作出评估。必要时再拟出进一步的实验方案,使实验工作更趋完善,所得结果也更为可靠。如在研究某一显色反应时,为选择合适的显色温度、酸度和显色完全的时间,可作如下的试验安排。首先确定上述三因素的实验范围:显色温度: 25——35℃酸浓度: ——L (酸浓度以

(温度以B表示)

A表示)显色时间: 10——30min (时间以C表示)其次确定每种因素在上述实验范围内各取的水平数(如各取三个水平) 。因素A的三个水平分别以 A1,A2,A3表示;因素B的三个水平分别以 B1,B2,B3表示;因素C的三个水平分别以 C1,C2,C3表示;然后将显色试验的因素、水平列为下表。因素AB水平温度(t/℃)酸浓度(C/mol·L-1)125230335这是一个三因素三水平的试验问题,对这样的试验工作可做如下的安排。A1B1C1A2B1C1A3B1C1A1B1C2A2B1C2A3B1C2A1B1C3A2B1C3A3B1C3A1B2C1A2B2C1A3B2C1A1B2C2A2B2C2A3B2C2A1B2C3A2B2C3A3B2C3A1B3C1A2B3C1A3B3C1A1B3C2A2B3C2A3B3C2A1BCABCABC33233333

C时间(t/min)102030即三因素水平的试验共 27种组合(33=27),按上组合方式做完 27次试验后自然可得出在所确定的因素和水平下的最佳显色条件。这种全面试验的方法,对事物的内部规律剖析得十分清楚,但却费时费事。假如我们还需要对实验精密度, 对试验误差的大小做出估计, 则每一试验至少应重复一次。 即应做54次实验。如果在讨论六因素而每种因素均取 5个水平时,则全面试验的数目是 56=15625次,这里还未包括为了给出误差估计所需的重复试验次数,显然这是难以付诸实施的。当考察的因素,水平数越多,在试验中所有可能的搭配也更多,要逐个地进行试验,显然是不可能的。这就提出了合理地设计和安排试验的问题。提出了通过较少量的试验次数以获得理想的实验条件取得最佳的试验效果,并对试验结果做出科学评估的问题。对于上述试验,一种习惯的试验方法是简单比较法。简单比较法这种方法首先固定因素 A、B为某一水平(如A1、B1),改变C以获得在A1、B1时C的最佳水平(设为 C2,在其下以“--”)。CA1B1 C

12C 3然后固定A为A1,C为C2,改变B以获得在A1、C2时B的最佳水平(设为 B3)B 1A1C2 B2B 3再固定B为B3,C为C2,改变A以获得在B3、C2时的最佳水平(设为 A2)。A 1B3C2 A2A 3这样可以认为 A2B3C2为较佳的显色条件,即简单比较法经过 9次试验也能获得较佳的试验条件, 但却存在以下缺点:当各因素之间交互影响较大时 ,A2B3C2不认为是最佳试验条件。它未能保证三因素中任何两因素的不同水平之间相碰一次因而上不均衡的,它提供的信息也是不丰富的。在不做重复试验的情况下,不能给出误差的估计。如何保持这种方法试验次数少的优点而又能避免上述缺点呢,可采用正交设计的方法来解决。在这9次试验中实际上有两次试验是在相同条件下的重复试验( A1B3C2和A1B3C2),所以只有 7次属不同条件下的实验,另一方面还可看出各因素、各水平出现的机会是不均衡的,其中 A1、C2各出现了 7次;B3、C1各出现了4次;而A2、A3、C1、C3、B2却只出现了一次,显然,它们的出现的机会是很不均衡的。简单比较法认为最佳的分析条件是 A2B3C2,但在试验过程中 C2是在A1B1条件下与 C1和C3相比,是最佳的一个条件水平,至于因素 A、B取其他水平时是否也得出同样的结论,却未做过实验,也不能得出同样的结论,故上述的条件不能视为最佳的显色条件,而 只能是最佳条件的一种估计 。导致上述几种问题的原因是简单比较法中各因素各水平的 搭配不是均衡分散 的,只能在同一批试验中做单因素比较,而在不同批数的试验之间却无法进行比较。2.3正交设计法试验设计是数理统计中的一个重要内容, 正交设计是利用预先编制好的正交表来合理的安排多因素试验,以便通过少量的试验次数来获得满意的结果,同时对试验数据进行统计分析。现在对三因素三水平的试验做如下的安排, 首先只考虑 A、B两因素,起全面实验应作 9次,如下表所示。BB1B2B3AA1A1B1A1B2A1B3A2A2B1A2B2A2B3A3A3B1A3B2A3B3这时两因素的三水平相互各碰一次,它反映的情况全面,现在将因素 C考虑进去,也同样希望在任何两个因素的不同水平之间各相碰一次而有不增加试验的次数,可做如下按排 .。C B B1 B2 B3AA1 A1B1C1 A1B2C2 A1B3C3A2 A2B1C2 A2B2C3 A2B3C1A3 A3B1C3 A3B2C1 A3B3C2按上表安排的 9次试验与简单比较法相比,试验次数相同但却克服了简单比较法的不均衡性, A的每个水平和B、C的三个水平分别各碰一次, B的每个水平和 A、C的三个水平分别各碰一次,对 C也是类似的情况。即三因素中 任何两因素的不同水平均相碰一次 因而试验是均衡的,上述 9次试验可视为三因素三水平的全面试验的代表。为了书写方便,上述试验设计可简化为下表:CB123A112322313312表中右下角部分的每一行和每一列中, 1,2,3正好各出现一次,我们把具有这样的性质方块叫拉丁方,在排这种方块时常用拉丁字母,故有拉丁方之称。正交设计法的基本特征3.1均衡分散性在正交设计的试验安排中,各因素之间的搭配是均匀的,这种因素间搭配的均匀性——试验点分布的均衡性成为正交设计的均衡分散性。或者说,正交试验设计把各试验条件均衡地分散在排列完全的水平组合之中,是之更具有代表性,更易于通过最少的试验次数来寻求最佳的试验条件,正交设计的这种性质,可以从试验结果的平均值中消除由于非均衡所引起的误差 ,有利于提高测定结果的可靠信。整齐可比性正交试验设计中,各因素各水平之间不仅搭配均匀,而且变化很有规律。在考虑某因素的每一水平的试验中,其他各因素各水平出现的次数都相同 ,所作的贡献也认为是一致的。这样在比较各因素的每一水平对指标生产的影响时,就能最大限度地排除其他因素的干扰,突出本因素的作用,也就将各因素的效应清楚地加以区别并估计其大小,这就是正交试验设计的整齐可比性。在数学上把均衡分散性和整齐可比性称为正交性,凡具有这特性的试验设计方法都称为正交设计法。正是由于正交试验设计最大限度地排除了其他因素的干扰并消除了非均匀分散性可能造成的误差,因而只要比较因素各水平的试验指标的平均植, 就能估计各因素对试验指标的影响大小, 这在后面将作具体的介绍。两拉丁方的叠合在上述三因素三水平的基础上, 如果还需同时考虑 第四个因素 D,且因素D也取三个水平(D1,D2,D3),那么能否在不增加试验次数而又能保持前述的要求呢这首先应将 D的三个水平拼成拉丁方,其次 D的拉丁方和C的拉丁方不一样。 对于前着,是使 D也能与A、B均衡搭配;对于后者,是使 D与C之间也能均衡,既无重复,又无遗漏。若用(1),(2),(3)表示D的三个水平,而 D的拉丁方与 C的拉丁方相同时,其 9次试验安排为:C(D) B1 2 3A11(1)2(2)3(3)22(2)3(3)1(1)33(3)1(1)2(2)这时A、B和D间是均衡的搭配,但 C和D的搭配却不均衡, C的(1)水平和 D的(1)水平相碰三次而不与D的(2)、(3)水平相碰,C的其他水平也有类似的情况。所以上述的试验安排是不妥的,当试验的结果表明C的(1)水平最好,而在 C取(1)水平时总是伴随着 D的(1)水平的出现,自然也可以认为是D的(1)水平也最好,导致 C和D的作用混杂。改进上述试验设计时, 只需使D的拉丁方和 C的拉丁方不同,两拉丁方具有均匀的搭配。按此原则可作如下的设计:C、DB123A11(1)2(2)3(3)22(3)3(1)1(2)33(2)1(3)2(1)这时D的三个水平组成的是拉丁方,它和A、B及C之间的搭配都是均衡的,D的每一水平和C的1、2、3水平各碰一次, C的每一水平也和 D的(1)、(2)、(3)水平各碰一次,既无重复,也无遗漏。现将 C、D两个拉丁方叠合在一起,就获得上述的试验设计,习惯上把具有这种性质的 两个拉丁方叫正交拉丁方。123(1)(2)2311(1)2(2)3(3)(3)3122(3)3(1)1(2)3(2)1(3)2(1)正交拉方设计因其搭析得十分清楚而不致混杂

配均衡,在分析试验数据时可以把每个因素的作用剖,同时还可简便地寻求到最优的测量条件 ,达到预期的效果。第一部分正交试验结果的直观分析1.正交表及其使用正交表它是一种预先编制好的表格,根据这种表可合理安排试验并 对试验数据作出判断 。对于前述的三因素三水平试验的设计安排,可采用44L9(3)正交表来完成。L9(3)表见表1.表1L9(34)正交表水平因素(列号)1234试验号111112122231333421235223162312731328321393321表L9(34)读作L—9—3—4,符号L表示正交表,L右下角的数字“9”表示此表有9行,即需安排9个实验,括号内数字的指数“ 4”表示有 4列,即最多能安排四个因素;括号内数字的底数“ 3”表示每个因素取三个水平。表头的列号是置放试验中的因素(因素常记为 A、B、C、D⋯⋯),表中列号 1、2、3、4是在不考虑交互作用时最多可置放四个因素(因素少于四时,可只用其中几列) ,表的左侧为试验号,表内的1、2、3是因素在试验中应分别取的水平,故称作水平号。 L9(34)正交表可解决四因素(或少于四因素)的三水平试验设计问题,是一种较为简单的正交表。当试验因素及所取水平数更多时,则应选择其它种类的正交表,如5136292916个试验,可安两L16(4)、L27(3)、L25(5)、L16(4×2)等,其中L16(4×2)表示作个四水平的因素和 9个二水平的因素。.正交表的选择选择正交表时可考虑以下几点:() 根据试验目的确定要考查的因素,如对试验的变化规律有大致的了解,有把握判断出影响试验效果的主要因素,可少取些因素,也可多取些因素,总之不能将主要影响因素漏掉。() 确定各因素的变化范围和水平数, 每个因素的水平数可以相等,也可以不等 ,一般地说,重要因素或者特别希望详细考查的因素,其变化范围可宽些水平数可多些,其余的因素所取水平数则可少些。() 根据试验者进行试验时一次能平行完成的试验次数而选择正交表。( )选用正交表除考虑因素水平及试验条件外,还应考虑对试验结果精度的要求。当对试验结果的精度要求高时,宜取试验次数多的正交表,试验费用贵或试验周期长的,可取试验次数少的正交表。当存在交互作用时,应选用具交互作用的正交表。一般情况下,若因素全为二水平时,可选用 L4(23)、L8(27)、15 4) 7 18L16(2)等正交表;因素全是三水平时,可选用 L9(3、L18(2×3)、L27(3)等正交表;若因素全为四水平的,可选用 L16(45)正交表;因素全为五水平的则选用 L16(45)正交表。当因素取不同水平时,一方面可采用下面即将介绍的拟水平法,一方面可直接套用 L8(4×*28)、L12(3×28)、L16(4×212)、L18(42×29)等混合水平正交表。在三水平实验种选 L18(2×37),其中2水平所在的列,不做安排。三水平因素可在其它7列选用。正交试验的工作程序及几点说明在选择所需要的正交表后,将已确定的因素放置在表的任意列上,并把每一列的 1、2、3⋯⋯填入具体水平,即得出试验方案。今仍以前述三因素三水平的显色反应为例,其试验方案如下表所示。表:三因素三水平正交试验表水平因素123试验结果A(t/oC)B(mol/L)C(t/min)试验号11(25)1()1(10)21(25)2()2(20)31(25)3()3(30)42(30)1()2(20)52(30)2()3(30)62(30)3()1(10)73(35)1()3(30)83(35)2()1(10)93(35)3()2(20)表中每一横行表示一次试验及进行该试验时所取的条件,按上安排作完实验后并将所测结果填入最后一列内,至于试验结果的分析,将在以后再作讨论。上面的试验设计表未考虑因素之间的交互作用,故选用 L9(34)正交表,三因素在表上所处的列可任意选择而且可将因素的次序进行交换。如在 1、2、3列可依次排列 A、B、C三因素,也可安排为 A、C、B三因素,在把因素及水平排入正交表后而获得一张试验设计表,这过程叫表头设计。 L9(34)表所安排的 9次试验,不一定按表上的试验号码排列,也可按抽签的方法来决定,这样处理是为了减少试验中由于先后掌握不匀所带来的影响,但对有些试验,其次序却不宜随意变更。对于每个因素的水平并不一定总是由小到大(或由大到小)按顺序排列,一般采用随机化方法来处理,即对部分因素的水平作随机的排列。常用的正交表三因素二水平正交表正交表为L4(23),表头设计为:列号123试验号1111212232124221七因素二水平正交表正交表为L8(27),表头设计为:列号1234567试验号1111111121112222312211224122221152121212621221217221122182212112更多因素二水平的正交法正交表为L12(211)、L16(215),前者的表头设计为:列号1234567891011试验号1111111111112111112222223112221112224121221221125122122121216122212212117212211221218212122211129211222122111022211112212112212121112222112121221四因素三水平正交表正交表为L9(34),表头设计在前已述及,当为三因素时,此三因素可在表头上占取任意三列,如三因素三水平在选用 L9(34)时,表头设计可为:列号123试验号111121223133421352216232731283239331七因素三水平正交表正交表为L18(37),表头设计为:列号 1 2 3 4 5 6 7 1试验号111111111212222221313333331421122331522233111623311221731213231832321311933132122101133221211121133221213221132132123132214223121321523123212163132312217321312321833212312*:若把二水平的列7171排进L18(3)表中,便得到混合型L18(2×3)表。更多因素的三水平正交表可选用L27(313)、L36(313)正交表。五因素四水平正交表正交表为L16(45),表头设计为:列号12345试验号1 1 1 1 1 12122223133334144445212346221437234128243219313421032431113312412342131341423144231415432411644132更多因素的四水平,可选用 L32(49)正交表。六因素五水平正交表正交表为L25(56),表头设计为:列号123456实验号111111121222223133333414444451555556212345722345182345129245123102512341131352412324135133352411434135215352413164142531742531418431425194425312045314221515432225215432353215424543215255543212.二列间交互作用正交表二列间指两因素之间(因为因素占列)交互作用正交表除能对因素的主效应进行考查外 ,有时还能简便地考查各因素之间的交互作用并给出交互效应的大小。所谓交互作用,是指在某些试验中 ,不仅因素自身对实验结果产生影响 ,而且因素之间产生协同的影响 ,这种协同作用叫交互作用。 如考查氮肥(N)和磷肥(P)对豆类增产效果 ,可在四块土质情况基本相同的土地上做四个试验,试验中施肥情况及产量如表所示 .表: 氮肥.磷肥对豆类产量的影响试验号N量(m/kg)1023

P量(m/kg)产量(m/kg)02000215302225432275由表知,单施氮肥3kg增产豆类15kg;单施磷肥2kg增产豆类25kg;同时施加了3kg氮肥和2kg磷,豆类增产量不是把两种肥料单独使用时增产豆类量的加和,而是增产了 75kg,说明两种肥料对豆类增产起了协同的效果,这种作用叫氮肥和磷肥的交互作用,以 NXP表示。对于其它的因素,则记作因素 1X因素2,或A×B、A×C等。二列间交互作用正交表试验设计时,要考虑各因素间有无交互作用,这既可从专业本身加以判断,也可对一定的试验方案下的实验数据经统计分析来加以确定。在常用正交表中,有的只能考查因素本身的效应,不能用以考查因素间的交互作用;有的则可以分析因素间的交互作用,很多正交表都附有相应的二列间的交互作用表。在作表头设计时,若不考虑因素间的交互作用,则因素置那一列上可任意选取,若因素间存在交互作用,则因素的置放要根据一定的规则,应利用有交互作用的表来设计表头。今以 L8(27)正交表来安排具有二列间交互作用的试验工作时,可由表 2对因素及交互列在表头中所处的列号作出安排。表2:L8(27)二列间交互作用表列号1(A)2(B)3(A*B)4(C)5(A*C)6(B*C)7列号1(A)(1)3254762(B)(2)167453(A*B)(3)76544(C)(4)1235(A*C)(5)326(B*C)(6)17(7)表2中最上一行和最左侧一列数字以及括号(呈对角线)内的数字是列号,其余数字均为交互作用的列号。对于三因素而言,先将因素置放在表的第 1、2列,则A和B相交的位置上的数字为 3。即A*B应置放在第3列上,再将因素 c置放于第4列,则A和C相交位置上的数字是 5,B和C相交位置上的数字是 6,这样A和C及B和C的交互作用列应分别为第 5列和第6列。如果考查时还有第四个因素 D,并将它置放于第6列,根据上表可得如下的表头设计。列号1234567BCD因素AA*BA*CA*DC*DB*DB*C这样的设计中,虽有B和C×D、C与B×D、D与B×C的混杂,但如果已知 B、C、D之间的交互作用很小。故不致影响试验结果的分析,仍可进引因素 A、B、C及交互作用 A×B、A×C及A×D的考查。如果要对四个因素及其两两之间的交互作用都作全面的考查,不允许上述存在的几种混杂,故此时不能选用 L8(27)表,而选用 L16(215)二列向的交互作用表,见表 3。表3:L15)二列向的交互作用表16(2列123456789101112131415列号号1(1)325476981110131215142(2)16745101189141512133(3)7654111098151413124(4)123121314158910115(5)32131215149811106(6)1141512131011897(7)151413121110988(8)12345679(9)32547610(1016745)11 (11 7 6 5 4)12 (12 1 2 3)13 (13 3 2)14 (14 1)15(15)这样,对于四因素的表头设计为:列号123456789101112131415AABABC因素ABCD×B×C×C×D×D×D表3中,D未置入第7列。原因是D置于7列后,A×D应置第6列,导致与B×C的混杂。对于五因素。二水平的试验,在同时考虑各因素之间的交互作用时,因五因素自身及它们之间的两两交互作用共有 15项,仍可用 L16(215)二列间交互作用表,其表头设计为:列号12345678因素ABA*BCA*CB*CD*ED列号9101112131415因素A*DB*DC*EC*DB*EA*EE如果考查一个四因素三水平的问题,在只考虑因素主效应时,选用 L8(27)正交表,让因素顺序上列,水平对号入座,填写好试验方案并按此安排进行实验。若同时考虑交互作用的影响,仍以选用7L8(2)二列向交互作用表为宜,在填写试验方案时,只需列出交互作用列仅不填水平取值,仍按 L8(27)表的安排作完八个实验,并将测得值填入表中,既可考察四因素各自的主效应,同时也能考察它们两两的交互作用效应。示例如下:今考查影响某化合物产量的四个主要因素,每个因素取两个水平,其值为:因素At/c Bt/h C反料配比 D搅拌速度水平1A180B12C11/1D1慢2A2100B23C21D2快在不考虑因素间的交互作用时,试验按下表安排进行:因素A B C D试验号1111121122312124122152112621217221182222当同时考虑交互作用的影响,但又根据已有的经验估计这些交互作用并不明显时,仍选用L8(27)二列间的交互作用表,其表头设计为:列号1234567A×BA×CB×C因素ABCDC×DB×DA×D在此情况下,每个因素的作用可以分析清楚,而交互作用都混杂在一起,只是由于交互作用很小,不必单独颁出来,这样的处理对结果不致产生明显的影响。如果不需对各因素的交互作用作全面的考查而只讨论其中影响较大的几个交互作用, 如A×B、A×C、A×D则表头设计为:列号 1 2 3 4 5 6 7B C D因素 A A×B A×C A×DC×D B×D B×C设计中虽有一些混杂,但因 C×D、B×D、B×C 却很小,不致影响结果分析。若需全面考查四因素及其两两的交互作用。则选用 L16(215)二列交互作用表,其表头设计为:11列号1234567891012141513AABABC×因素ABCD×B×C×C×D×DD根据已有的经验,因素 A、B、C之间交互作用,而搅拌速度 D与这些因素间的交互作用可予忽略,这样就成为研究四个因素和三个交互作用中,何者对产量影响较大、何者影响较小并进而寻求有利于提高化合物产量的条件选择问题。这时应选择至少有七列的二水平正交表 L8(27),其表头设计为:列号 1 2 3 4 5 6 7因素 A B A×B C A×C B×C D表头设计好后,再按正交试验的基本方法,列出如下试验方案。列号因素At/cBt/cA×BC配比A×CB×CD试验号123456711(80)1(2)11(1/1)111(慢)21(80)1(2)121)222(快)3 1(80) 2(3) 2 1(1/1) 1 2 2(快)41(80)2(3)221)211(慢)52(100)1(2)21(1/1)212(快)62(100)1(2)221)121(慢)72(100)2(3)11(1/1)221(慢)82(100)2(3)121)112(快)综上所述,可知正交表是安排多因素试验的一种有用的工具,在应用时不得将主要影响因素遗漏,必要时倾向于多考查一些因素, 因为有时增加 1—2个考查的因素不一定会增加试验次数或者说增加工作量并不大。在采用三水平以上的正交表作试验后,可根据试验结果作图,找出不同水平的变化趋势,为以后的试验提供有益的信息。所以在不遗漏合理值的前提下,可把各因素的取值范围稍取宽些,在此范围内取的水平数也不宜多,以免选用试验次数多的正交表而增加试验工作量。如果先用水平数少的正交表作实验,以从多个因素中挑选出主要因素后,再于下一批试验中对已挑选出的主要因素进行的细致考查。在一般化学分析中,三因素之间的交互作用通常可以忽略,不必单独再作考查,让其混杂在试验误差之中。因交互作用不是具体因素,也就不存在水平问题,无须专门增加试验工作来判断它的影响。3.正交试验结果的直观分析正交试验结果的直观分析由选定的正交表安排试验并按试验方案完成试验记录各次试验的结果,再按一定步骤分析试验结果。试验结果分析方法有两种,一种是直观分析法;一种为方差分析法。直观分析法是一种常用的结果分析法,它简便直观,计算工作量小,但不能给出试验误差的估计,也就无法得知分析结果的精度。不考虑交互作用的单指标正交实验的结果分析对于只考虑因素的主效应而忽略因素间的交互作用时,正交试验结果的分析,可从下面几个例子说明:例1:研究某萃取分离过程的萃取效率,选择了如下的因素和水平萃取温度(A):15(A1)、25(A2)萃取时间(B): 3min(B 1).、5min(B2)两相体积比(C):1/1(C 1) 、2/1(C2)盐析剂用量(D): 1g/25ml(D 1) 、2g/25ml(D2)试判断在不考虑交互作用的情况下各因素的影响并寻求最佳的萃取条件。解:此题属四因素二水平问题,可选用 L8(27)正交表,在表头设计中将因素 A、B、C、D分置于1、2、4、7列,并将因素的各水平代入,按正交表安排做完八次试验,所得结果记录于表的末列。因素A B C D 试验结果列号试验号

yi(%)1 2 4 71153118621532/12953155129141552/11945253129162532/11967255118382552/1288如果从八次试验结果的萃取效率yi来看,可认为A2B1C2D1为最佳条件。实际上,为获得正确的结论,应对所测数据作科学的分析。首先将测得数据进行综合比较,找出对 yi有明显影响的因素,进而判断它取什么水平对试验产生最佳的效果。为便于综合比较,可先从每个因素的不同水平的比较着手,在八次试验中,由于每一次试验都是在不同条件下进行的,故无比较的基础,只有将所测八个数据适当地加以组合,才能找到某种可比性——正交设计的综合可比性。以因素A为例,A的1水平A1出现在表的试验号1-4号,这四次试验的萃取效率的平均值为A1=1y1y2y3y491.5%4A的2水平A2出现在表的试验号5-8号,四次试验的萃取效率的平均值为A21y5y6y7y889.5%4由于在A1条件下的四次试验中,因素B、C、D皆取遍了两种水平,且两种水平出现的次数相同,均为二次。同样在A2条件下的四次试验中,B、C、D也都取遍两种水平,且均为二次。这样对于A1和A2条件下的四次试验来说,虽然其它条件B、C、D在变化,但这种变化是平等的或均衡的,即A1与A2之间的差异反映了两个水平的不同影响,所以A1与A2就是有可比性了A1-A2=可以认为因素A取A1水平时优于取A2水平,根据同样的理由比较因素B、C、D的两种水平的效果,可得如下各式:B11y1y2y5y692.0%B21y3y4y7y889.0%C11y1y3y5y787.75%C21y2y4y6y893.25%D11y1y4y6y789.75%D21y2y3y5y891.25%以上各项计算的结果可列在正交表的下方。因素ABCD试验结果yi列号(%)1234567试验号11111862112295312129141221945211291621219672211838222288K1366 368 351 359K2358 356 373 365k1k1 4K2k2 4k1k2表中K1表示正交表中每列的1水平所对应的数据之和,k1`为其平均值;K2表示正交表中每列的2水平对应的数据之和,k2为其平均值,R叫极差,是每列两水平平均值之差。RAA1A291.589.52.0RBB1B292.089.03.0RCC1C287.7593.255.5RDD1D289.7591.251.5由差值的正负知因素A取A1比A2好;因素B取B1比B2好;因素C取C2比C1好;因素D取D2比D1好,所以在不考虑交互作用的情况下,选择A1B1C2D2进行萃取是最为合适的。另一方面A、B、C、D四因素各自对萃取效率的影响是不同的,这种影响的大小具体表现在该因素的不同水平对应的平均萃取效率之间的差异大小。从表上的极差植R绝对值知,因素C的两个水平所导致的萃取效率的差异最大,即C的影响是最大的,其次是因素B、A,影响最小的是因素D。当然,在试验范围改变后,上述结论也可能发生变化。例:为提高某产物的产率,考查可温度、反应时间、压力和溶液浓度四个因素的影响,每个因素取三个水平,取值如下(其中因素 A的三个水平作了随机处理) :因素温度t℃时间t压力P浓度C1hMpamolL水平1140212031304713解:试验是四因素三水平问题,可选用L93、L1823、L273等正交表,如果由于试L94验条件的限制,则选用试验次数少的3表,将因素顺序上列,水平对号填入並按正交表的安排作完九次试验,结果记录于表的右侧,而对结果所作的初步运算记录于表的下面部分。列号1234产率因素(%)ABCD实验号111112122231333421235223162312731328321393321K1K2295.5K3K1k1 3k2K232.839K3k3 3R kmax kmin表中数据表明最佳反应条件是 A3B3C1D3,这时可得最高的产率。当然,这是所说的最佳反应条件是各因素所取水平值的范围内得出的结论,当水平取值范围改变后,最佳反应条件也可能改变。另一方面,这里所得的最佳水平组合,并不包括在已做的九次试验中,为了证实上述的结论,应按最佳组合进行试验,将所得结果与试验方案中具有最高产率的试验作一比较。如果将各因素的水平取值对指标作图,得图 1。还可以对因素与指标的关系作图,即分别以因素 A,B,C,D的各水平为横坐标,以对应的平均试验数据(数值)为纵坐标作图。453640353534率率30产33产25322031153011.522.53110120130140150反应浓度反应时间364534403235率30率产产2830262524200.150.20.250.30.3500.20.40.60.811.2反应压力溶液浓度图1:因素水平取值与 产率的关系由图1知某因素的点子散布(波动)的范围大,表明该因素对指标的影响也大;点子散布范围小,对指标的影响也小。例中因素 D的不同水平所对应的平均产率之间的差异最大,是影响产率的主要因素,其次是A,而影响最小的是 B和C。对因素D而言,因其最佳水平在试验范围的边界上,故有必要适当地扩大 D的取值,以获得更佳的试验条件。在进行正交试验设计时如果所考查的因素其水平的取值不是具体的数值量, 可用种类或类型来加以区别。如研究激发电流,电极形状及电极间距对光谱测定某元素的灵敏度的影响时,其中电极形状可能是平头,凹月面,细腰状平头电极。它们不是具体的取值,因而可用类型分别表示,将这些类型记录在正交表该因素所在列的有关水平号内,同时记录每次试验谱线对背景的强度比lgII

L,再按前述对所测数据进行处B理以寻求最佳的光谱分析条件。有交互作用的正交试验的结果分析除因素的单独作用外,其间的交互作用也影响着试验的指标。交互作用不是具体的因素。当然也无“水平”的问题,对它考虑与否于试验本身并无什么关系,但在选用正交表及进行试验结果分析时,却应该考虑到交互作用的列数。对于有交互作用的试验方案的安排及结果分析,可以从以下用例给予说明。例1:为研究某化学反应的完全程度,考查了如下的因素及各种因素所对应的水平值。在考虑到正交作用的情况下,选择合适的反应条件。表中催化剂及稳定剂也可分别用,a,b或I型II型表示。因素ABC水平催化剂稳定剂温度m/(mg·L-1)V/mlt/℃118a50I120224b70II140A×B、A×C、B×C的交互作用,选用L827此题属三因素二水平问题,同时存在表安排试验工作,其试验结果及有关计算如下。列号 A B A ×B C A×C B×C 反应完全试验号 1 2 3 4 5 6 7 程度(%)1111111121112222312211224122221152121212621221217221122182212112K177K2R K1K2在不考虑交互作用的情况下从表中九次实验结果的数据知,以A1B2C1为最佳的条件组合;从K1K2判定,则应取A2B1C1。但考虑到交互作用时,根据极差R的大小可看出C和A×C是最主要的,其余的交互作用是次要的。从因素C考虑,以C1为好,但A×C对指标也有重要的影响。这种影响甚至接近或超过A和C自身的影响,所以应将 A、C的不同水平的组合再作比较以寻求具有最佳效果的组合。AA1 A2CC1C2其中A1C1最大,故取A1C1,而由前知因素B取B1,所以最佳反应条件为A1B1C1。例:为提高植物生长调节剂九二零的效价,选择了A、B、C、D四种因素,每种因素取两个水平,除考查因素A、B、C、D外还要考查A与B、A与C及B与C之间的交互作用。在选用L872表所作的八次试验中,所得结果分别为、、、、、、、。由题意及有关数据经简单计算后得下表。列号因素

1 2 3

4

5 6 7

试验结果(效价)A B

A

×B C A

×C B

×C D试验号1111111121112222312211224122221152121212621221217221122182212112K1K2k1k2R由上数据知第3号试验效价最高,相应的组合为A1B2C1D2,再由极差大小可看出因素和交互作用对指标影响的主次关系为D、A×C、A、A×B、B×C、C、B。所以D、A×C、及A是影响指标的重要因素,其中D尤为显著。对于因素D所取得两个水平,由于k2大于k1,说明D2的效价高于D1;对于A、C的任何水平相搭配,从下表看出。水平搭配平均效价A1C12.052.442.2452A1C22.241.101.6702A2C11.501.261.3802A2C21.352.001.6252可见在A1C1条件下具有最高的平均效价,故取A1C1。对于因素B,虽然本身属次要因素,但A×B存在较大的影响,故也应按上述方法选择A与B不同水平的最佳搭配,结果表明A1B1有最高的平均效价。综上所述,使九二零具有最佳效价的水平组合是A1B1C1D2。多指标正交试验结果的直观分析当试验工作的效果或预期目标不只一项而是多项时,在相应的直观分析中可采用综合评分法或综合平衡法,不论指标之间存在一致性或制约性,均应兼顾到各项指标,以求获得最好的效果。综合评分法在对各项指标逐个测定后,视情况对各指标进行综合评分,继而综合为单指标,再按单指标的分析方法作直观分析。例:从天然植物中提取某两种中药成分 p和q,得粗制品,考查了 A,B,C,D四个因素,每一因素均取三个水平,试验指标为两药分各自的质量分数。因素及水平取值见下表。因素A B C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论