版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.在平面直角坐标系中,一只电子狗从原点O出发,按向上→向右→向下→向下→向右的方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,则A2018的坐标为()A.(337,1) B.(337,﹣1) C.(673,1) D.(673,﹣1)2.下列各数中是无理数的是()A. B. C. D.3.如图,若BD是等边△ABC的一条中线,延长BC至点E,使CE=CD=x,连接DE,则DE的长为()A. B. C. D.4.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2) B.(﹣3,2) C.(3,﹣2) D.(﹣3,﹣2)5.一个多边形的内角和是外角和的2倍,则这个多边形对角线的条数是()A.6 B.9 C.12 D.186.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为()A.30° B.34° C.36° D.40°7.以下列各组线段为边,能组成三角形的是()A.2、2、4 B.2、6、3 C.8、6、3 D.11、4、68.下列添括号正确的是()A. B.C. D.9.下列运算正确的是A. B. C. D.10.,是两个连续整数,若,则()A.7 B.9 C.16 D.1111.下面各组数中不能构成直角三角形三边长的一组数是()A. B. C. D.12.为迎接我市创建全国文明城市活动,环卫处投资20万元购买并投放一批型“垃圾清扫车”,因为清扫车需求量增加,计划继续投放型清扫车,型清扫车的投放数量与型清扫车的投放数量相同,投资总费用减少,购买型清扫车的单价比购买型清扫车的单价少50元,则型清扫车每辆车的价格是多少元?设型清扫车每辆车的价格为元,根据题意,列方程正确的是()A. B.C. D.二、填空题(每题4分,共24分)13.已知是二元一次方程组的解,则2m+n的值为_____.14.如图,是的中线,,,则和的周长之差是.15.将一副三角板如图叠放,则图中∠AOB的度数为_____.16.如图,在四边形中,,对角线平分,连接,,若,,则_________________.17.方程的根是______.18.将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为_________________________________________________.三、解答题(共78分)19.(8分)(1)如图中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,则能得如下两个结论:①DC=BC;②AD+AB=AC.请你证明结论②;(2)如图中,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.20.(8分)在△ABC中,AC=BC,∠ACB=90°,D为AB边的中点,以D为直角顶点的Rt△DEF的另两个顶点E,F分别落在边AC,CB(或它们的延长线)上.(1)如图1,若Rt△DEF的两条直角边DE,DF与△ABC的两条直角边AC,BC互相垂直,则S△DEF+S△CEF=S△ABC,求当S△DEF=S△CEF=2时,AC边的长;(2)如图2,若Rt△DEF的两条直角边DE,DF与△ABC的两条直角边AC,BC不垂直,S△DEF+S△CEF=S△ABC,是否成立?若成立,请给予证明;若不成立,请直接写出S△DEF,S△CEF,S△ABC之间的数量关系;(3)如图3,若Rt△DEF的两条直角边DE,DF与△ABC的两条直角边AC,BC不垂直,且点E在AC的延长线上,点F在CB的延长线上,S△DEF+S△CEF=S△ABC是否成立?若成立,请给予证明;若不成立,请直接写出S△DEF,S△CEF,S△ABC之间的数量关系.21.(8分)如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠1.22.(10分)解分式方程和不等式组:(1)(2)解不等式组并写出不等式组的整数解.23.(10分)如图,在平面直角坐标系中,过点A(0,6)的直线AB与直线OC相交于点C(2,4)动点P沿路线O→C→B运动.(1)求直线AB的解析式;(2)当△OPB的面积是△OBC的面积的时,求出这时点P的坐标;(3)是否存在点P,使△OBP是直角三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.24.(10分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.25.(12分)如图,在平面直角坐标系中,的顶点,,均在正方形网格的格点上.(1)画出关于x轴的对称图形;(2)将,沿轴方向向左平移3个单位、再沿轴向下平移1个单位后得到,写出,,顶点的坐标.26.先化简,再求值:,其中的值是从的整数值中选取.
参考答案一、选择题(每题4分,共48分)1、C【分析】先写出前9个点的坐标,可得点的坐标变化特征:每三个点为一组,循环,进而即可得到答案.【详解】观察点的坐标变化特征可知:A1(0,1),A2(1,1)A3(1,0)A4(1,﹣1)A5(2,﹣1)A6(2,0)A7(2,1)A8(3,1)A9(3,0)…发现规律:每三个点为一组,循环,∵2018÷3=672…2,∴第2018个点是第673组的第二个点,∴A2018的坐标为(673,1).故选:C.【点睛】本题主要考查点的坐标,找出点的坐标的变化规律,是解题的关键.2、C【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】A.3.14是有限小数,属于有理数;B.=2,是整数,属于有理数;C.是无理数;D.=4,是整数,属于有理数;故选C.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.3、D【分析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.【详解】解:∵△ABC为等边三角形,
∴∠ABC=∠ACB=60°,AB=BC,
∵BD为中线,∵CD=CE,
∴∠E=∠CDE,
∵∠E+∠CDE=∠ACB,
∴∠E=30°=∠DBC,
∴BD=DE,
∵BD是AC中线,CD=x,
∴AD=DC=x,
∵△ABC是等边三角形,
∴BC=AC=2x,BD⊥AC,
在Rt△BDC中,由勾股定理得:故选:D.【点睛】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.4、C【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,﹣2).故选C.5、B【分析】根据多边形的内角和是360°即可求得多边形的内角和,然后根据多边形的内角和求得边数,进而求得对角线的条数.【详解】设这个多边形有条边,由题意,得解得∴这个多边形的对角线的条数是故选:B.【点睛】此题比较简单,只要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.6、B【解析】由AB=BD,∠B=40°得到∠ADB=70°,再根据三角形的外角的性质即可得到结论.【详解】解:∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选:B.【点睛】本题考查了等腰三角形的性质,三角形外角的性质,熟练掌握等腰三角形的两个底角相等和三角形的外角等于不相邻两个内角的和是解答本题的关键.7、C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】根据三角形的三边关系,知A、2+2=4,不能组成三角形;B、3+2=5<6,不能组成三角形;C、3+6>8,能够组成三角形;D、4+6<11,不能组成三角形.故选C.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.8、C【分析】添加括号,若括号前是负号,则括号内需要变号,根据这个规则判断下列各选项.【详解】A中,,错误;B中,,错误;C中,,正确;D中,,错误故选:C【点睛】本题考查添括号,注意去括号和添括号关注点一样,当括号前为负号时,去括号需要变号.9、A【解析】选项A,选项B,,错误;选项C,,错误;选项D,,错误.故选A.10、A【分析】根据,可得,求出a=1.b=4,代入求出即可.【详解】解:∵,∴,∴a=1.b=4,∴a+b=7,故选A.【点睛】本题考查了二次根式的性质和估算无理数的大小,关键是确定的范围.11、D【分析】三角形的三边分别为a、b、c,如果,那么这个三角形是直角三角形.【详解】A.,能构成直角三角形;B.,能构成直角三角形;C.,能构成直角三角形;D.,不能构成直角三角形;故选:D.【点睛】此题考查勾股定理的逆定理,熟记定理并运用解题是关键.12、C【分析】设B型清扫车每辆车的价格为元,则A型清扫车每辆车的价格为(x+50)元,依据“型清扫车的投放数量与型清扫车的投放数量相同,”列出关于x的方程,即可得到答案.【详解】解:设B型清扫车每辆车的价格为元,则A型清扫车每辆车的价格为(x+50)元,根据题意,得:;故选:C.【点睛】考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.二、填空题(每题4分,共24分)13、1【解析】解:由题意可得:,①-②得:4m+2n=6,故2m+n=1.故答案为1.14、1【分析】根据中线可得AD=CD,周长之差就是AB与BC的差,计算即可.【详解】∵BD是△ABC的中线,∴AD=CD,∴△ABD和△CBD的周长之差就是AB与BC的差,即AB-BC=1cm,故答案为:1.【点睛】本题考查三角形中线相关的计算,关键在于熟悉中线的性质.15、【分析】根据三角形的外角的性质计算即可.【详解】由三角形的外角的性质可知,∠AOB=∠CAO-∠B=60°-45°=15°,
故答案为:15°.【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.16、1【分析】由等腰三角形的性质和角平分线的性质可推出AD∥BC,然后根据平行线的性质和已知条件可推出CA=CD,可得CB=CA=CD,过点C作CE⊥BD于点E,CF⊥AB于点F,如图,根据等腰三角形的性质和已知条件可得DE的长和,然后即可根据AAS证明△BCF≌△CDE,可得CF=DE,再根据三角形的面积公式计算即得结果.【详解】解:∵,∴∠CBD=∠CDB,∵平分,∴∠ADB=∠CDB,∴∠CBD=∠ADB,∴AD∥BC,∴∠CAD=∠ACB,∵,,∠CBD=∠CDB,∴,∴,∴CA=CD,∴CB=CA=CD,过点C作CE⊥BD于点E,CF⊥AB于点F,如图,则,,∵,,∴,在△BCF和△CDE中,∵,∠BFC=∠CED=90°,CB=CD,∴△BCF≌△CDE(AAS),∴CF=DE=5,∴.故答案为:1.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.17、,【分析】先移项得到x(x+1)-1(x+1)=0,再提公因式得到(x+1)(x-1)=0,原方程化为x+1=0或x-1=0,然后解一次方程即可.【详解】解:∵x(x+1)-1(x+1)=0,
∴(x+1)(x-1)=0,
∴x+1=0或x-1=0,
∴x1=-1,x1=1.
故答案为:x1=-1,x1=1.【点睛】本题考查了解一元二次方程—因式分解法:先把方程,右边化为0,再把方程左边因式分解,这样把原方程转化为两个一元一次方程,然后解一次方程即可得到原方程的解.18、如果两条直线平行于同一条直线,那么这两条直线平行.【分析】命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【详解】命题可以改写为:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【点睛】任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.三、解答题(共78分)19、(1)证明见解析(2)成立,证明见解析.【分析】(1)根据角平分线的性质可得∠DAC=∠BAC=60°,又已知∠ABC=∠ADC=90°,所以∠DCA=∠BCA=30°,根据直角三角形的性质可证AC=2AD,AC=2AB,所以AD+AB=AC.(2)根据已知条件可在AN上截取AE=AC,连接CE,根据AAS可证△ADC≌△EBC,得到DC=BC,DA=BE,所以AD+AB=AB+BE=AE,即AD+AB=AC.【详解】(1)∵∠MAN=120°,AC平分∠MAN.∴∠DAC=∠BAC=60°,∵∠ABC=∠ADC=90°,∴∠DCA=∠BCA=30°,在Rt△ACD,Rt△ACB中,∠DCA=30°∠BCA=30°∴AC=2AD,AC=2AB,∴2AD=2AB∴AD=AB∴AD+AB=AC.(2)(1)中的结论①DC=BC;②AD+AB=AC都成立,理由:如图,在AN上截取AE=AC,连结CE,∵∠BAC=60°,∴△CAE为等边三角形,∴AC=CE,∠AEC=60°,∵∠DAC=60°,∴∠DAC=∠AEC,∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,∴∠ADC=∠EBC,∴,∴DC=BC,DA=BE,∴AD+AB=AB+BE=AE,∴AD+AB=AC.20、(1)4;(2)成立,理由详见解析;(3)不成立,S△DEF﹣S△CEF=S△ABC.【分析】(1)证明DE是△ABC的中位线,得出DEBC,AC=2CE,同理DF=AC,证出四边形DECF是正方形,得出CE=DF=CF=DE,得出S△DEF=S△CEF=2=DE•DF=DF2,求出DF=2,即可得出AC=2CE=4;(2)连接CD,证明△CDE≌△BDF,得出S△CDE=S△BDF,即可得出结论;(3)不成立;连接CD,同(2)得出△DEC≌△DBF,得出S△DEF=S五边形DBFEC=S△CFE+S△DBC=S△CFE+S△ABC.【详解】解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形DECF是矩形,∵∠ACB=90°,∴BC⊥AC,∵DE⊥AC,∴DE∥BC,∵D为AB边的中点,∴DE是△ABC的中位线,∴DE=BC,AC=2CE,同理:DF=AC,∵AC=BC,∴DE=DF,∴四边形DECF是正方形,∴CE=DF=CF=DE,∵S△DEF=S△CEF=2=DE•DF=DF2,∴DF=2,∴CE=2,∴AC=2CE=4;(2)S△DEF+S△CEF=S△ABC成立,理由如下:连接CD;如图2所示:∵AC=BC,∠ACB=90°,D为AB中点,∴∠B=45°,∠DCE=∠ACB=45°,CD⊥AB,CD=AB=BD,∴∠DCE=∠B,∠CDB=90°,S△ABC=2S△BCD,∵∠EDF=90°,∴∠CDE=∠BDF,在△CDE和△BDF中,,∴△CDE≌△BDF(ASA),∴DE=DF.S△CDE=S△BDF.∴S△DEF+S△CEF=S△CDE+S△CDF=S△BCD=S△ABC;(3)不成立;S△DEF﹣S△CEF=S△ABC;理由如下:连接CD,如图3所示:同(1)得:△DEC≌△DBF,∠DCE=∠DBF=135°,∴S△DEF=S五边形DBFEC,=S△CFE+S△DBC,=S△CFE+S△ABC,∴S△DEF﹣S△CFE=S△ABC.∴S△DEF、S△CEF、S△ABC的关系是:S△DEF﹣S△CEF=S△ABC.【点睛】本题考查三角形全等的性质与判定,中位线的性质,关键在于熟练掌握基础知识.21、见解析【解析】试题分析:由同旁内角互补,两直线平行得到AB∥CD,进而得到∠ABC=∠BCD,再由∠P=∠Q,得到PB∥CQ,从而有∠PBC=∠QCB,根据等式性质得到∠1=∠1.试题解析:证明:∵∠ABC+∠ECB=180°,∴AB∥CD,∴∠ABC=∠BCD.∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠QCB,∴∠ABC﹣∠PBC=∠BCD﹣∠QCB,即∠1=∠1.点睛:本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.22、(1)x=-1;(2)1≤x<2,x=1.【分析】(1)根据解分式方程的一般步骤解方程即可;(2)根据不等式的基本性质分别解两个不等式,然后取公共解集,即可得出结论.【详解】(1)解:去分母,得化简得,2x=-2系数化为1得,x=-1经检验x=-1是原分式方程的解.(2)解:解不等式①,得x≥1.解不等式②,得x<2.∴不等式组的解集为1≤x<2.∴不等式组的整数解为x=1.【点睛】此题考查的是解分式方程和解一元一次不等式组,掌握解分式方程的一般步骤和不等式的基本性质是解决此题的关键.23、;点或;点P的坐标为或.【分析】(1)由B、C坐标,根据待定系数法可求得直线AB的解析式;(2)由(1)列出AB的方程,求出B的坐标,求出的面积和的面积,设P的纵坐标为m,代值求出m,再列出直线OC的解析式为,当点P在OC上时,求出P点坐标,当点P在BC上时,求出P点坐标即可;(3)根据直角三角形的性质和点坐标列出解析式解出即可.【详解】点A的坐标为,设直线AB的解析式为,点在直线AB上,,,直线AB的解析式为;由知,直线AB的解析式为,令,,,,,的面积是的面积的,,设P的纵坐标为m,,,,直线OC的解析式为,当点P在OC上时,,,当点P在BC上时,,,即:点或;是直角三角形,,当点P在OC上时,由知,直线OC的解析式为,直线BP的解析式的比例系数为,,直线BP的解析式为,联立,解得,,当点P在BC上时,由知,直线AB的解析式为,直线OP的解析式为,联立解得,,,即:点P的坐标为或.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国屏幕面板行业投资前景及策略咨询研究报告
- 2024至2030年中国压力自动校验系统数据监测研究报告
- 2024至2030年中国光纤按续盒行业投资前景及策略咨询研究报告
- 2024至2030年中国中档桥梁板行业投资前景及策略咨询研究报告
- 2024年中国高速钢圆材市场调查研究报告
- 2024年中国聚氯乙烯汽车地板市场调查研究报告
- 安第斯之旅:摄影与探索-揭示南美自然美与土著文化
- 2024年中国大电流校验线市场调查研究报告
- 2024年中国全羊毛胶背地毯市场调查研究报告
- 昆明市物流园区发展规划问题研究
- 装修工程提出的合理化建议
- 模拟真实天平(flash模拟型课件)
- 药品采购供应制度检查表
- 发电机组达标投产自查报告
- 2021年贵州高考理综试题含答案
- 如何做好一名责任护士ppt课件
- 通信线路毕业设计(论文):通信光缆线路维护
- 5索夫矩阵模型在观众拓展规划中的运用
- 管道缩写代号.xlsx
- 2021年科室人材培养和人材梯队建设计划.doc
- 化工原理重要公式(总结精选)
评论
0/150
提交评论