版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.九年级(1)班学生周末从学校出发到某实践基地研学旅行,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地,已知快车的速度是慢车速度的1.2倍,如果设慢车的速度为x千米/时,根据题意列方程得()A. B. C. D.2.点的位置在A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.3,3,6 B.1,5,5 C.1,2,3 D.8,3,44.下列各式属于最简二次根式的是()A. B. C. D.5.一件工作,甲独做a小时完成,乙独做b小时完成,则甲、乙两人合作完成需要()小时.A. B. C. D.6.下列命题是真命题的是()A.三角形的一个外角大于任何一个内角B.如果两个角相等,那么它们是内错角C.如果两个直角三角形的面积相等,那么它们的斜边相等D.直角三角形的两锐角互余7.如图,在平面直角坐标系中,为坐标原点,点在轴正半轴上,点,,……在射线上,点,,……在射线上,,,,……均为等边三角形,依此类推,若,则点的横坐标是()A. B. C. D.8.如图,两直线和在同一坐标系内图象的位置可能是()A. B.C. D.9.立方根等于它本身的有()A.0,1 B.-1,0,1 C.0, D.110.如图,在ΔABC中,∠BAC=120°,点D是BC上一点,BD的垂直平分线交AB于点E,将ΔACD沿AD折叠,点C恰好与点E重合,则∠B等于(
)A.15° B.20° C.25° D.30°11.下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±412.“对顶角相等”的逆命题是()A.如果两个角是对顶角,那么这两个角相等B.如果两个角相等,那么这两个角是对顶角C.如果两个角不是对顶角,那么这两个角不相等D.如果两个角不相等,那么这两个角不是对顶角二、填空题(每题4分,共24分)13.某校对1200名学生的身高进行了测量,身高在1.58~1.63(单位:)这一个小组的频率为0.25,则该组的人数是________.14.把直线y=﹣x向下平移_____个单位得到直线y=﹣x﹣1.15.腰长为4的等腰直角放在如图所示的平面直角坐标系中,点A、C均在y轴上,C(0,2),∠ACB=90,AC=BC=4,平行于y轴的直线x=-2交线段AB于点D,点P是直线x=-2上一动点,且在点D的上方,当时,以PB为直角边作等腰直角,则所有符合条件的点M的坐标为________.16.如图,点在等边的边上,,射线,垂足为点,点是射线上一动点,点是线段上一动点,当的值最小时,,则的长为___________________.17.如图,已知在锐角△ABC中,AB.AC的中垂线交于点O,则∠ABO+∠ACB=________.18.如图,在中,,按以下步骤作图:分别以点和点为圆心,大于一半长为半径作画弧,两弧相交于点和点,过点作直线交于点,连接,若,,则的周长为_____________________.三、解答题(共78分)19.(8分)某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨;(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元吨(10≤a≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费W关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,W的变化情况.20.(8分)近年来,随着我国科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国创造”.高铁事业是“中国创造”的典范,它包括D字头的动车以及G字头的高铁,已知,由站到站高铁的平均速度是动车平均速度的倍,行驶相同的路程400千米.高铁比动车少用个小时.(1)求动车的平均速度;(2)若以“速度与票价的比值”定义这两种列车的性价比,人们出行都喜欢选择性价比高的方式.现阶段站到站的动车票价为元/张,高铁票价为元/张,求动车票价为多少元/张时,高铁的性价比等于动车的性价比?21.(8分)(1)因式分解:(2)整式计算:22.(10分)如图,在平面直角坐标系中,,,,点、在轴上且关于轴对称.(1)求点的坐标;(2)动点以每秒2个单位长度的速度从点出发沿轴正方向向终点运动,设运动时间为秒,点到直线的距离的长为,求与的关系式;(3)在(2)的条件下,当点到的距离为时,连接,作的平分线分别交、于点、,求的长.23.(10分)先化简,再求值并从中选取合适的整数代入求值.24.(10分)在中,,在的外部作等边三角形,为的中点,连接并延长交于点,连接.(1)如图1,若,求的度数;(2)如图2,的平分线交于点,交于点,连接.①补全图2;②若,求证:.25.(12分)(1)解方程:(2)2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南一北京西”全程大约千米,“复兴号”次列车平均每小时比某列“和谐号”列车多行驶千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”次列车从太原南到北京西需要多长时间.26.如图,在中,,,,M在AC上,且,过点A(与BC在AC同侧)作射线,若动点P从点A出发,沿射线AN匀速运动,运动速度为,设点P运动时间为t秒.(1)经过_________秒时,是等腰直角三角形?(2)经过_________秒时,?判断这时的BM与MP的位置关系,说明理由.(3)经过几秒时,?说明理由.(4)当是等腰三角形时,直接写出t的所有值.
参考答案一、选择题(每题4分,共48分)1、C【分析】设慢车的速度为x千米/小时,则快车的速度为1.2x千米/小时,根据题意可得走过150千米,快车比慢车少用小时,列方程即可.【详解】设慢车的速度为x千米/小时,则快车的速度为1.2x千米/小时,
根据题意可得:.
故选C.【点睛】本题考查了由实际问题抽象出分式方程,解题的关键是读懂题意,找出合适的等量关系,列方程.2、B【分析】根据各象限内点的坐标特点,再根据M点的坐标符号,即可得出答案.【详解】解:∵点M(-2019,2019),∴点M所在的象限是第二象限.故选B.【点睛】本题考查各象限内点的坐标的符号特征,解题的关键是熟记各象限内点的坐标的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、B【分析】根据三角形的三边关系:三角形两边之和大于第三边.【详解】解:A、3+3=6,不能组成三角形,故此选项错误;
B、1+5>5,能组成三角形,故此选项正确;
C、1+2=3,不能组成三角形,故此选项错误;
D、3+4<8,不能组成三角形,故此选项错误;
故选B.【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形的三边关系.4、B【分析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,由此结合选项可得出答案.【详解】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.5、D【解析】甲、乙合作完成工程的时间=工作总量÷甲乙工效之和,没有工作总量,可设其为1,所以甲、乙合做此项工程所需的时间为1÷()=小时.【详解】设工作量为1,由甲1小时完成,乙1小时完成,因此甲、乙合作此项工程所需的时间为1÷()=小时,故选D.【点睛】本题考查了利用列代数式(分式),解决问题的关键是读懂题意,找到所求的量与已知量间的关系.6、D【分析】根据三角形的外角性质,平行线的判定和直角三角形的性质对各选项分析判断后利用排除法求解.【详解】A、因为三角形的外角大于任何一个与它不相邻的内角,故本选项错误;B.如果两个角相等,那么它们不一定是内错角,故选项B错误;C.如果两个直角三角形的面积相等,那么它们的斜边不一定相等,故选项C错误;D.直角三角形的两锐角互余.正确.故选:D.【点睛】本题考查点较多,熟练掌握概念,定理和性质是解题的关键.7、B【分析】根据等边三角形的性质和以及外角的性质,可求得,可求得,由勾股定理得,再结合的直角三角形的性质,可得点横坐标为,利用中位线性质,以此类推,可得的横坐标为,的横坐标为……,所以的横坐标为,即得.【详解】,为等边三角形,由三角形外角的性质,,,由勾股定理得,的纵坐标为,由的直角三角形的性质,可得横坐标为,以此类推的横坐标为,的横坐标为……,所以的横坐标为,横坐标为.故选:B.【点睛】考查了图形的规律,等边三角形的性质,的直角三角形的性质,外角性质,勾股定理,熟练掌握这些性质内容,综合应用能力很关键,以及类比推理的思想比较重要.8、D【分析】根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案.【详解】根据一次函数的系数与图象的关系依次分析选项可得:
A、由图可得,中,,,中,,,不符合;
B、由图可得,中,,,中,,,不符合;
C、由图可得,中,,,中,,,不符合;
D、由图可得,中,,,中,,,符合;
故选:D.【点睛】本题考查了一次函数的图象问题,解答本题注意理解:直线所在的位置与的符号有直接的关系.9、B【分析】根据立方根性质可知,立方根等于它本身的实数2、1或-1.【详解】解:∵立方根等于它本身的实数2、1或-1.
故选B.【点睛】本题考查立方根:如果一个数x的立方等于a,那么这个数x就称为a的立方根,例如:x3=a,x就是a的立方根;任意一个数都有立方根,正数的立方根是正数,负数的立方根是负数,2的立方根是2.10、B【分析】由题意根据折叠的性质得出∠C=∠AED,再利用线段垂直平分线的性质得出BE=DE,进而得出∠B=∠EDB,以=以此分析并利用三角形内角和求解.【详解】解:∵将△ACD沿AD折叠,点C恰好与点E重合,∴∠C=∠AED,∵BD的垂直平分线交AB于点E,∴BE=DE,∴∠B=∠EDB,∴∠C=∠AED=∠B+∠EDB=2∠B,在△ABC中,∠B+∠C+∠BAC=∠B+2∠B+120°=180°,解得:∠B=20°,故选:B.【点睛】本题考查折叠的性质和线段垂直平分线上的点到线段两端点的距离相等的性质,熟记相关性质是解题的关键.11、B【分析】根据平方根和算术平方根的知识点进行解答得到答案.【详解】A.,错误;B.(﹣)2=2,正确;C.,错误;D.,错误;故选B.【点睛】本题主要考查二次根式的性质与化简,仔细检查是关键.12、B【分析】把命题的题设和结论互换即可得到逆命题.【详解】命题“对顶角相等”的逆命题是“如果两个角相等,那么它们是对顶角”,故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.二、填空题(每题4分,共24分)13、1.【解析】试题解析:该组的人数是:1222×2.25=1(人).考点:频数与频率.14、1.【分析】直接根据“上加下减”的原则即可解答.【详解】解:∵0﹣(﹣1)=1,∴根据“上加下减”的原则可知,把直线y=﹣x向下平移1个单位得到直线y=﹣x﹣1.故答案为:1.【点睛】本题考查一次函数的图像与几何变换,熟知图像平移的法则是解题的关键.15、或或或【分析】根据等腰直角三角形存在性问题的求解方法,通过分类讨论,借助全等的辅助,即可得解.【详解】∵,AC=BC=4,平行于y轴的直线交线段AB于点D,∴∵∴∴PD=2∴以PB为直角边作等腰直角如下图,作⊥于R∵,∴∴,RP=BS=2∴;以PB为直角边作等腰直角同理可得;以PB为直角边作等腰直角同理可得;以PB为直角边作等腰直角同理可得,∴M的坐标为或或或,故答案为:或或或.【点睛】本题主要考查了等腰直角三角形的存在性问题,通过面积法及三角形全等的判定和性质进行求解是解决本题的关键.16、1【分析】作出点M关于CD的对称点M1,然后过点M1作M1N⊥AB于N,交CD于点P,连接MP,根据对称性可得MP=M1P,MC=M1C,然后根据垂线段最短即可证出此时最小,然后根据等边三角形的性质可得AC=BC,∠B=60°,利用30°所对的直角边是斜边的一半即可求出BM1,然后求出BC即可求出AC.【详解】解:作出点M关于CD的对称点M1,然后过点M1作M1N⊥AB于N,交CD于点P,连接MP,如下图所示根据对称性质可知:MP=M1P,MC=M1C此时=M1P+NP=M1N,根据垂线段最短可得此时最小,且最小值为M1N的长∵△ABC为等边三角形∴AC=BC,∠B=60°∴∠M1=90°-∠B=30°∵,当的值最小时,,∴在Rt△BM1N中,BM1=2BN=18∴MM1=BM1-BM=10∴MC=M1C=MM1=5∴BC=BM+MC=1故答案为:1.【点睛】此题考查的是垂线段最短的应用、等边三角形的性质和直角三角形的性质,掌握垂线段最短、等边三角形的性质和30°所对的直角边是斜边的一半是解决此题的关键.17、90°.【分析】由中垂线的性质和定义,得BA=BC,BE⊥AC,从而得∠ACB=∠A,再根据直角三角形的锐角互余,即可求解.【详解】∵BE是AC的垂直平分线,∴BA=BC,BE⊥AC,∴∠ACB=∠A.∵∠ABO+∠A=90°,∴∠ABO+∠ACB=90°.故答案为:90°.【点睛】本题主要考查垂直平分线的性质以及直角三角形的性质定理,掌握垂直平分线的性质,是解题的关键.18、1【分析】利用基本作图可以判定MN垂直平分BC,则DC=DB,然后利用等线段代换得到的周长=AB+AC,再把,代入计算即可.【详解】解:由作法得MN垂直平分BC,则DC=DB,故答案为:1.【点睛】本题考查了基本作图和线段垂直平分线的性质,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是本题的关键.三、解答题(共78分)19、(1)甲仓库存放原料240吨,乙仓库存放原料210吨;(2)W=(20﹣a)m+30000;(3)①当10≤a<20时,W随m的增大而增大,②当a=20时,W随m的增大没变化;③当20≤a≤30时,W随m的增大而减小.【解析】(1)根据甲乙两仓库原料间的关系,可得方程组;(2)根据甲的运费与乙的运费,可得函数关系式;(3)根据一次函数的性质,要分类讨论,可得答案.【详解】解:(1)设甲仓库存放原料x吨,乙仓库存放原料y吨,由题意,得,解得,甲仓库存放原料240吨,乙仓库存放原料210吨;(2)由题意,从甲仓库运m吨原料到工厂,则从乙仓库云原料(300﹣m)吨到工厂,总运费W=(120﹣a)m+100(300﹣m)=(20﹣a)m+30000;(3)①当10≤a<20时,20﹣a>0,由一次函数的性质,得W随m的增大而增大,②当a=20是,20﹣a=0,W随m的增大没变化;③当20≤a≤30时,则20﹣a<0,W随m的增大而减小.【点睛】本题考查了二元一次方程组的应用,一次函数的应用,解(1)的关键是利用等量关系列出二元一次方程组,解(2)的关键是利用运费间的关系得出函数解析式;解(3)的关键是利用一次函数的性质,要分类讨论.20、(1)动车的平均速度为240千米/时;(2)动车票价为250元/张时,高铁的性价比等于动车的性价比.【分析】(1)设动车的平均速度为千米/时,则高铁的平均速度为千米/时,利用行驶相同的路程400千米.高铁比动车少用个小时,列分式方程,解分式方程并检验,从而可得答案;(2)分别根据题意表示:高铁的性价比为,动车的性价比为,再列分式方程,解分式方程并检验,从而可得答案.【详解】解:(1)设动车的平均速度为千米/时,则高铁的平均速度为千米/时,由题意:,整理得,解得,经检验是所列分式方程的解.答:动车的平均速度为240千米/时.(2)∵高铁的性价比为,动车的性价比为,由题意得:,∴,∴,经检验,是所列方程的解.答:动车票价为250元/张时,高铁的性价比等于动车的性价比.【点睛】本题考查的是分式方程的应用,掌握利用分式方程解应用题的基本步骤,由题意确定相等关系是解题的关键,注意检验.21、(1)(2).【分析】(1)根据提取公因式与公式法综合即可因式分解;(2)根据整式的运算公式即可求解.【详解】(1)==(2)==.【点睛】此题主要考查因式分解与整式的乘法运算,解题的关键是熟知因式分解与整式的乘法运算法则.22、(1)C(4,0);(2);(3).【分析】(1)根据对称的性质知为等边三角形,利用直角三角形中30度角的性质即可求得答案;(2)利用面积法可求得,再利用坐标系中点的特征即可求得答案;(3)利用(2)的结论求得,利用角平分线的性质证得,求得,利用面积法求得,再利用直角三角形中30度角的性质即可求得答案.【详解】(1)∵点、关于轴对称,∴,∴,∵,∴为等边三角形,∴,∴,∴点C的坐标为:;(2)连接,∵,∴,∵,∴,∵,∴,∵,∴,即:;(3)∵点到的距离为,∴,∴,∴,延长交于点,过点作轴于点,连接、,∵为的角平分线,为等边三角形,∴,,∵,,∴,∴,设,在中,,∴,∵,∴,∴,∴,∴,∵,,∴,∵,∴,在中,,,∴,∴,,∴,∴.【点睛】本题是三角形综合题,涉及的知识有:含30度直角三角形的性质,全等三角形的判定与性质,外角性质,角平分线的性质,等边三角形的判定和性质,坐标与图形性质,熟练掌握性质及定理、灵活运用面积法求线段的长是解本题的关键.23、,.【分析】将原式化简成,由已知条件为中的整数,原式有意义可知,从而得出或,将其代入中即可求出结论.【详解】∵且为整数,且,,.∴取,原式.或取,原式【点睛】分式的化简考查了分式的运算,主要涉及分式的加减法、分式的乘除法,分式的加减法关键是化异分母为同分母,分式的除法关键是将除法转化为乘以除式的倒数;求值部分,尤其是这类选取适当的数代入求值时,千万要注意未知数取值的限制,所有使分母等于零的数都不能取,使使除号后紧跟的分式的分子为零的数也不能取避免进入分式无意义的雷区,例如本题已知条件中选取的合适的整数只有1和1.24、(1);(2)①补全图形,如图所示.见解析;②见解析.【解析】(1)分别求出∠ADF,∠ADB,根据∠BDF=∠ADF-∠ADB计算即可;
(2)①根据要求画出图形即可;
②设∠ACM=∠BCM=α,由AB=AC,推出∠ABC=∠ACB=2α,可得∠NAC=∠NCA=α,∠DAN=60°+α,由△ABN≌△ADN(SSS),推出∠ABN=∠ADN=30°,∠BAN=∠DAN=60°+α,∠BAC=60°+2α,在△ABC中,根据∠BAC+∠ACB+∠ABC=180°,构建方程求出α,再证明∠MNB=∠MBN即可解决问题;【详解】(1)解:如图1中,在等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国屏幕面板行业投资前景及策略咨询研究报告
- 2024至2030年中国压力自动校验系统数据监测研究报告
- 2024至2030年中国光纤按续盒行业投资前景及策略咨询研究报告
- 2024至2030年中国中档桥梁板行业投资前景及策略咨询研究报告
- 2024年中国高速钢圆材市场调查研究报告
- 2024年中国聚氯乙烯汽车地板市场调查研究报告
- 安第斯之旅:摄影与探索-揭示南美自然美与土著文化
- 2024年中国大电流校验线市场调查研究报告
- 2024年中国全羊毛胶背地毯市场调查研究报告
- 昆明市物流园区发展规划问题研究
- 固体酸催化材料1:多金属氧酸盐
- 江苏译林版小学英语单词汇总表-带音标可打印
- 担保公司业务流程图
- 2023太阳能光热发电吸热塔消能减振
- 湖南省2023年对口高考计算机应用类专业考试大纲
- 2023年特种设备(承压类)生产单位安全风险管控(日管控、周排查、月调度)清单
- 江苏省2021-2022学年高二下学期高中合格考试信息技术试题十二套(含答案解析)
- 向幼儿园介绍小学的生活学习习惯和校园
- 低压电工作业实际操作科目三演示文稿
- 苏州园区体检报告 模板
- 当前政法机关腐败问题的特点成因及对策
评论
0/150
提交评论