版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年辽宁省盘锦市某学校数学高职单招测试试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.已知展开式前三项的系数成等差数列,则n为()A.lB.8C.1或8D.都不是
2.若logmn=-1,则m+3n的最小值是()A.
B.
C.2
D.5/2
3.已知向量a=(2,4),b=(-1,1),则2a-b=()A.(5,7)B.(5,9)C.(3,7)D.(3,9)
4.设集合,则A与B的关系是()A.
B.
C.
D.
5.若sin(π/2+α)=-3/5,且α∈[π/2,π]则sin(π-2α)=()A.24/25B.12/25C.-12/25D.-24/25
6.从200个零件中抽测了其中40个零件的长度,下列说法正确的是()A.总体是200个零件B.个体是每一个零件C.样本是40个零件D.总体是200个零件的长度
7.A.x=y
B.x=-y
C.D.
8.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为()A.0B.-8C.2D.10
9.下列函数是奇函数的是A.y=x+3
B.C.D.
10.A.
B.
C.
二、填空题(10题)11.
12.
13.设lgx=a,则lg(1000x)=
。
14.已知直线l1:ax-y+2a+1=0和直线l2:2x-(a-l)y+2=0(a∈R)则l1⊥l2的充要条件是a=______.
15.
16.已知那么m=_____.
17.函数的定义域是_____.
18.
19.己知等比数列2,4,8,16,…,则2048是它的第()项。
20.若f(x-1)=x2-2x+3,则f(x)=
。
三、计算题(5题)21.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
22.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
23.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
24.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
25.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
四、证明题(5题)26.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
27.若x∈(0,1),求证:log3X3<log3X<X3.
28.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2
+(y+1)2
=8.
29.
30.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
五、简答题(5题)31.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。
32.己知边长为a的正方形ABCD,PA丄底面ABCD,PA=a,求证,PC丄BD
33.已知抛物线的焦点到准线L的距离为2。(1)求拋物线的方程及焦点下的坐标。(2)过点P(4,0)的直线交拋物线AB两点,求的值。
34.某中学试验班有同学50名,其中女生30人,男生20人,现在从中选取2人取参加校际活动,求(1)选出的2人都是女生的概率。(2)选出的2人是1男1女的概率。
35.求k为何值时,二次函数的图像与x轴(1)有2个不同的交点(2)只有1个交点(3)没有交点
六、综合题(5题)36.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
37.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
38.
39.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
40.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
参考答案
1.B由题可知,,即n2-9n+8=0,解得n=8,n=-1(舍去)。
2.B对数性质及基本不等式求最值.由㏒mn=-1,得m-1==n,则mn=1.由于m>0,n>0,∴m+3n≥2.
3.A平面向量的线性计算.因为a=(2,4),b=(-1,1),所以2a-b=(2×2-(-1),2×4-1)=(5,7).
4.A
5.D同角三角函数的变换,倍角公式.由sin(π/2+α)=-3/5得cosα=-3/5,又α∈[π/2,π],则sinα=4/5,所以sin(π-2α)=sin2α=2sinαcosα==2×4/5×(-3/5)=-24/25.
6.D总体,样本,个体,容量的概念.总体是200个零件的长度,个体是每一零件的长度,样本是40个零件的长度,样本容量是40.
7.D
8.B直线之间位置关系的性质.由k=4-m/m+2=-2,得m=-8.
9.C
10.C
11.{-1,0,1,2}
12.-3由于cos(x+π/6)的最小值为-1,所以函数f(x)的最小值为-3.
13.3+alg(1000x)=lg(1000)+lgx=3+a。
14.1/3充要条件及直线的斜率.l1⊥l2→2a/a-1=-1→(2a)+(a-1)=0,解得A=1/3
15.
16.6,
17.{x|1<x<5且x≠2},
18.π
19.第11项。由题可知,a1=2,q=2,所以an=2n,n=log2an=log22048=11。
20.
21.
22.
23.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
24.
25.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
26.
27.
28.
29.
30.证明:考虑对数函数y=lgx的限制知
:当x∈(1,10)时,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B
31.x-7y+19=0或7x+y-17=0
32.证明:连接ACPA⊥平面ABCD,PC是斜线,BD⊥ACPC⊥BD(三垂线定理)
33.(1)拋物线焦点F(,0),准线L:x=-,∴焦点到准线的距离p=2∴抛物线的方程为y2=4x,焦点为F(1,0)(2)直线AB与x轴不平行,故可设它的方程为x=my+4,得y2-4m-16=0由设A(x1,x2),B(y1,y2),则y1y2=-16∴
34.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510
(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510
选出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897
35.∵△(1)当△>0时,又两个不同交点(2)当A=0时,只有一个交点(3)当△<0时,没有交点
36.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为
37.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国屏幕面板行业投资前景及策略咨询研究报告
- 2024至2030年中国压力自动校验系统数据监测研究报告
- 2024至2030年中国光纤按续盒行业投资前景及策略咨询研究报告
- 2024至2030年中国中档桥梁板行业投资前景及策略咨询研究报告
- 2024年中国高速钢圆材市场调查研究报告
- 2024年中国聚氯乙烯汽车地板市场调查研究报告
- 安第斯之旅:摄影与探索-揭示南美自然美与土著文化
- 2024年中国大电流校验线市场调查研究报告
- 2024年中国全羊毛胶背地毯市场调查研究报告
- 昆明市物流园区发展规划问题研究
- 装修工程提出的合理化建议
- 模拟真实天平(flash模拟型课件)
- 药品采购供应制度检查表
- 发电机组达标投产自查报告
- 2021年贵州高考理综试题含答案
- 如何做好一名责任护士ppt课件
- 通信线路毕业设计(论文):通信光缆线路维护
- 5索夫矩阵模型在观众拓展规划中的运用
- 管道缩写代号.xlsx
- 2021年科室人材培养和人材梯队建设计划.doc
- 化工原理重要公式(总结精选)
评论
0/150
提交评论