![2022年山东省沾化县重点名校中考数学模拟精编试卷含解析_第1页](http://file4.renrendoc.com/view/3c907857aa5aa0a0f460289347b95237/3c907857aa5aa0a0f460289347b952371.gif)
![2022年山东省沾化县重点名校中考数学模拟精编试卷含解析_第2页](http://file4.renrendoc.com/view/3c907857aa5aa0a0f460289347b95237/3c907857aa5aa0a0f460289347b952372.gif)
![2022年山东省沾化县重点名校中考数学模拟精编试卷含解析_第3页](http://file4.renrendoc.com/view/3c907857aa5aa0a0f460289347b95237/3c907857aa5aa0a0f460289347b952373.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A. B. C.12 D.242.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.3.计算﹣的结果为()A. B. C. D.4.某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是()A.50和48 B.50和47 C.48和48 D.48和435.如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是()A.7海里/时 B.7海里/时 C.7海里/时 D.28海里/时6.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是()A.点A在⊙O内 B.点A在⊙O上 C.点A在⊙O外 D.内含7.下列四个图形中,是中心对称图形的是()A. B. C. D.8.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2+3B.y=(x﹣2)2﹣3C.y=(x+2)2+3D.y=(x+2)2﹣39.如图是测量一物体体积的过程:步骤一:将180mL的水装进一个容量为300mL的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1mL=1cm3)().A.10cm3以上,20cm3以下 B.20cm3以上,30cm3以下C.30cm3以上,40cm3以下 D.40cm3以上,50cm3以下10.如果代数式有意义,则实数x的取值范围是()A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥3二、填空题(共7小题,每小题3分,满分21分)11.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是______.12.如图,在矩形ABCD中,AB=,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是_____.13.分解因式:x2﹣1=____.14.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于______.15.如图,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,点D、E分别为AM、AB上的动点,则BD+DE的最小值是_____.16.不等式组的非负整数解的个数是_____.17.在中,::1:2:3,于点D,若,则______三、解答题(共7小题,满分69分)18.(10分)如图,已知是的外接圆,圆心在的外部,,,求的半径.19.(5分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目
频数(人数)
羽毛球
30
篮球
乒乓球
36
排球
足球
12
请根据以上图表信息解答下列问题:频数分布表中的,;在扇形统计图中,“排球”所在的扇形的圆心角为度;全校有多少名学生选择参加乒乓球运动?20.(8分)如图,在四边形ABCD中,AB=BC=1,CD=DA=1,且∠B=90°,求:∠BAD的度数;四边形ABCD的面积(结果保留根号).21.(10分)某中学九年级数学兴趣小组想测量建筑物AB的高度他们在C处仰望建筑物顶端A处,测得仰角为,再往建筑物的方向前进6米到达D处,测得仰角为,求建筑物的高度测角器的高度忽略不计,结果精确到米,,22.(10分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.若AC=4,BC=2,求OE的长.试判断∠A与∠CDE的数量关系,并说明理由.23.(12分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.24.(14分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
解:如图,设对角线相交于点O,∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,由勾股定理的,AB===5,∵DH⊥AB,∴S菱形ABCD=AB•DH=AC•BD,即5DH=×8×6,解得DH=.故选A.【点睛】本题考查菱形的性质.2、B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.3、A【解析】
根据分式的运算法则即可【详解】解:原式=,故选A.【点睛】本题主要考查分式的运算。4、A【解析】
由折线统计图,可得该同学7次体育测试成绩,进而求出众数和中位数即可.【详解】由折线统计图,得:42,43,47,48,49,50,50,7次测试成绩的众数为50,中位数为48,故选:A.【点睛】本题考查了众数和中位数,解题的关键是利用折线统计图获取有效的信息.5、A【解析】试题解析:设货船的航行速度为海里/时,小时后货船在点处,作于点.由题意海里,海里,在中,所以在中,所以所以解得:故选A.6、A【解析】
直接利用点与圆的位置关系进而得出答案.【详解】解:∵⊙O的半径为5cm,OA=4cm,∴点A与⊙O的位置关系是:点A在⊙O内.故选A.【点睛】此题主要考查了点与圆的位置关系,正确①点P在圆外⇔d>r,②点P在圆上⇔d=r,③点P在圆内⇔d<r是解题关键.7、D【解析】试题分析:根据中心对称图形的定义,结合选项所给图形进行判断即可.解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选D.考点:中心对称图形.8、D【解析】
先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.故选:D.【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.9、C【解析】分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.详解:设玻璃球的体积为x,则有解得30<x<1.故一颗玻璃球的体积在30cm3以上,1cm3以下.故选C.点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x的取值范围.10、C【解析】
根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可.【详解】由题意得,x+3≥0,x≠0,解得x≥−3且x≠0,故选C.【点睛】本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、【解析】
利用特殊三角形的三边关系,求出AM,AE长,求比值.【详解】解:如图所示,设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根据题意得:AD=BC=x,AE=DE=AB=x,如图,作EM⊥AD于M,则AM=AD=x,在Rt△AEM中,cos∠EAD=,故答案为:.【点睛】特殊三角形:30°-60°-90°特殊三角形,三边比例是1::2,利用特殊三角函数值或者勾股定理可快速求出边的实际关系.12、【解析】
∵在矩形ABCD中,AB=,∠DAC=60°,∴DC=,AD=1.由旋转的性质可知:D′C′=,AD′=1,∴tan∠D′AC′==,∴∠D′AC′=60°.∴∠BAB′=30°,∴S△AB′C′=×1×=,S扇形BAB′==.S阴影=S△AB′C′-S扇形BAB′=-.故答案为-.【点睛】错因分析
中档题.失分原因有2点:(1)不能准确地将阴影部分面积转化为易求特殊图形的面积;(2)不能根据矩形的边求出α的值.13、(x+1)(x﹣1).【解析】试题解析:x2﹣1=(x+1)(x﹣1).考点:因式分解﹣运用公式法.14、【解析】
此题考查了二次函数的最值,勾股定理,等腰三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.【详解】过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE=,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出=,代入求出BF和CM,相加即可求出答案.过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM.∵OD=AD=3,DE⊥OA,∴OE=EA=OA=2,由勾股定理得:DE==5,设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴,∵AM=PM=(OA-OP)=(4-2x)=2-x,即,解得:∴BF+CM=.故答案为.【点睛】考核知识点:二次函数综合题.熟记性质,数形结合是关键.15、8【解析】试题分析:过B点作于点,与交于点,根据三角形两边之和小于第三边,可知的最小值是线的长,根据勾股定理列出方程组即可求解.过B点作于点,与交于点,设AF=x,,,,(负值舍去).故BD+DE的值是8故答案为8考点:轴对称-最短路线问题.16、1【解析】
先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.【详解】解:解①得:x≥﹣,解②得:x<1,∴不等式组的解集为﹣≤x<1,∴其非负整数解为0、1、2、3、4共1个,故答案为1.【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.17、2.1【解析】
先求出△ABC是∠A等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解.【详解】解:根据题意,设∠A、∠B、∠C为k、2k、3k,则k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵AB=10,∴BC=AB=1,∵CD⊥AB,∴∠BCD=∠A=30°,∴BD=BC=2.1.故答案为2.1.【点睛】本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC是直角三角形是解本题的关键.三、解答题(共7小题,满分69分)18、4【解析】
已知△ABC是等腰三角形,根据等腰三角形的性质,作于点,则直线为的中垂线,直线过点,在Rt△OBH中,用半径表示出OH的长,即可用勾股定理求得半径的长.【详解】作于点,则直线为的中垂线,直线过点,,,,即,.【点睛】考查垂径定理以及勾股定理,掌握垂径定理是解题的关键.19、(1)24,1;(2)54;(3)360.【解析】
(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;(2)利用360°乘以对应的百分比即可求得;(3)求得全校总人数,然后利用总人数乘以对应的百分比求解.【详解】(1)抽取的人数是36÷30%=120(人),则a=120×20%=24,b=120﹣30﹣24﹣36﹣12=1.故答案是:24,1;(2)“排球”所在的扇形的圆心角为360°×=54°,故答案是:54;(3)全校总人数是120÷10%=1200(人),则选择参加乒乓球运动的人数是1200×30%=360(人).20、(1);(2)【解析】
(1)连接AC,由勾股定理求出AC的长,再根据勾股定理的逆定理判断出△ACD的形状,进而可求出∠BAD的度数;
(2)由(1)可知△ABC和△ADC是Rt△,再根据S四边形ABCD=S△ABC+S△ADC即可得出结论.【详解】解:(1)连接AC,如图所示:∵AB=BC=1,∠B=90°∴AC=,又∵AD=1,DC=,∴AD2+AC2=3CD2=()2=3即CD2=AD2+AC2∴∠DAC=90°∵AB=BC=1∴∠BAC=∠BCA=45°∴∠BAD=135°;(2)由(1)可知△ABC和△ADC是Rt△,∴S四边形ABCD=S△ABC+S△ADC=1×1×+1××=.【点睛】考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.21、14.2米;【解析】
Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根据CD=BC-BD可得关于AB的方程,解方程可得.【详解】设米∵∠C=45°在中,米,,
又米,在中Tan∠ADB=,Tan60°=解得答,建筑物的高度为米.【点睛】本题考查解直角三角形的应用-仰角俯角问题,解题的关键是利用数形结合的思想找出各边之间的关系,然后找出所求问题需要的条件.22、(1);(2)∠CDE=2∠A.【解析】
(1)在Rt△ABC中,由勾股定理得到AB的长,从而得到半径AO.再由△AOE∽△ACB,得到OE的长;(2)连结OC,得到∠1=∠A,再证∠3=∠CDE,从而得到结论.【详解】(1)∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB==,∴AO=AB=.∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,∴OE==.(2)∠CDE=2∠A.理由如下:连结OC,∵OA=OC,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代办公环境下的技术趋势分析报告
- 生态修复技术在水域生态保护中的作用
- 2 认识几种常见的岩石(说课稿)-2023-2024学年科学四年级下册教科版
- 2024-2025学年高中化学 化学实验基本方法说课稿 新人教版必修1
- Unit 1 Lesson 1 At the Airport(说课稿)-2024-2025学年冀教版(三起)英语六年级上册
- 2024-2025学年高中物理 第10章 热力学定律 1 功和内能说课稿 新人教版选修3-3
- 2023八年级道德与法治上册 第二单元 遵守社会规则 第五课 做守法的公民 第2框 预防犯罪说课稿 新人教版
- Unit 2 Ways to school Part A Let's learn (说课稿)-2024-2025学年人教PEP版英语六年级上册001
- 10的再认识(说课稿)-2024-2025学年一年级上册数学人教版
- 2 时、分、秒(说课稿)-2023-2024学年二年级下册数学苏教版
- 2024年中考语文试题分类汇编:散文、小说阅读(第03期)含答案及解析
- 《宫颈癌筛查》课件
- 2024年联勤保障部队第九四〇医院社会招聘考试真题
- 第二章《有理数的运算》单元备课教学实录2024-2025学年人教版数学七年级上册
- DB31-T 596-2021 城市轨道交通合理通风技术管理要求
- 华为智慧园区解决方案介绍
- 2022年江西省公务员录用考试《申论》真题(县乡卷)及答案解析
- 【招投标管理探究的国内外文献综述2600字】
- 人教版八年级英语上册期末专项复习-完形填空和阅读理解(含答案)
- 化工企业三违清单不安全安全行为清单
- 解析贝壳找房商业模式
评论
0/150
提交评论