北京市房山区燕山地区2022-2023学年八年级数学第一学期期末联考试题含解析_第1页
北京市房山区燕山地区2022-2023学年八年级数学第一学期期末联考试题含解析_第2页
北京市房山区燕山地区2022-2023学年八年级数学第一学期期末联考试题含解析_第3页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+12.文文借了一本书共280页,要在两周借期内读完.当她读了一半时,发现平均每天要多读21页才能在借期内读完.她在读前一半时,平均每天读多少页?如果设读前一半时,平均每天读页,则下列方程中,正确的是()A. B.C. D.3.下列结论正确的是()A.有两个锐角相等的两个直角三角形全等; B.顶角和底边对应相等的两个等腰三角形全等C.一条斜边对应相等的两个直角三角形全等; D.两个等边三角形全等.4.小亮对一组数据16,18,20,20,3■,34进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,但小亮依然还能准确获得这组数据的()A.众数 B.方差 C.中位数 D.平均数5.如图,是直角三角形,,点、分别在、上,且.下列结论:①,②,③当时,是等边三角形,④当时,,其中正确结论的个数有()A.1个 B.2个 C.3个 D.4个6.化简的结果是()A. B. C. D.7.如果分式的值为零,那么应满足的条件是()A., B., C., D.,8.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70° B.44° C.34° D.24°9.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个10.如图,已知,则一定是的()A.角平分线 B.高线 C.中线 D.无法确定11.下列长度的三条线段能组成三角形的是()A.3,4,8 B.2,5,3 C.,,5 D.5,5,1012.在中,AB=15,AC=20,BC边上高AD=12,则BC的长为()A.25 B.7 C.25或7 D.不能确定二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3,则线段BD的长为___.14.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为_______.15.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E等于_____度.16.甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为,,成绩比较稳定的是__________(填“甲”或“乙”)17.在Rt△ABC中,∠C=90°,如果AB=15,AC=12,那么Rt△ABC的面积是_____.18.当x=__________时,分式的值为零.三、解答题(共78分)19.(8分)如图,直线与y轴的交点为A,直线与直线的交点M的坐标为.(1)求a和k的值;(2)直接写出关于x的不等式的解集;(3)若点B在x轴上,,直接写出点B的坐标.20.(8分)如图,在中,是边上的中线,是边上的中点,过点作交的延长线于点.(1)求证:.(2)当,时,求的面积.21.(8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为A(﹣3,0),B(﹣3,﹣3),C(﹣1,﹣3).(1)在图中作出△ABC关于x轴对称的图形△DEF;(2)求线段DF的长.22.(10分)雾霾天气持续笼罩我国大部分地区,困扰着广大市民的生活,口罩市场出现热销,小明的爸爸用12000元购进甲、乙两种型号的口罩在自家商店销售,销售完后共获利2700元,进价和售价如表:(1)小明爸爸的商店购进甲、乙两种型号口罩各多少袋?(2)该商店第二次以原价购进甲、乙两种型号口罩,购进甲种型号口罩袋数不变,而购进乙种型号口罩袋数是第一次的2倍,甲种口罩按原售价出售,而效果更好的乙种口罩打折让利销售,若两种型号的口罩全部售完,要使第二次销售活动获利不少于2460元,每袋乙种型号的口罩最多打几折?23.(10分)计算:14+(3.14)0+÷24.(10分)如图,△ABC中,AB=AC,∠C=30°,DA⊥BA于A,BC=6cm,求AD的长.25.(12分)把一大一小两个等腰直角三角板(即,)如下图放置,点在上,连结、,的延长线交于点.求证:(1);(2).26.某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数1800510250210150120人数113532(1)求这15位营销人员该月销售量的平均数、中位数和众数;(2)假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.

参考答案一、选择题(每题4分,共48分)1、B【详解】试题解析:A.x2-4=(x+2)(x-2),含有因式(x-2),不符合题意;B.x3-4x2-12x=x(x+2)(x-6),不含有因式(x-2),正确;C.x2-2x=x(x-2),含有因式(x-2),不符合题意;D.(x-3)2+2(x-3)+1=x2-4x+4=(x-2)2,含有因式(x-2),不符合题意,故选B.2、D【解析】试题解析:根据读前一半时,平均每天读页,即读140页时,用时表示为天,后一半平均每天要多读21页,得读后一半时平均每天读页,用时天,根据两周借期内读完列分式方程为:故选D.3、B【解析】试题解析:A两个锐角相等的两个直角三角形不全等,故该选项错误;B中两角夹一边对应相等,能判定全等,故该选项正确;

C一条斜边对应相等的两个直角三角形不全等,故该选项错误;

D中两个等边三角形,虽然角相等,但边长不确定,所以不能确定其全等,所以D错误.

故选B.4、C【分析】利用平均数、中位数、方差和众数的定义对各选项进行判断.【详解】解:这组数据的众数、方差和平均数都与第5个数有关,而这组数据的中位数为20与20的平均数,与第5个数无关.

故选:C.【点睛】本题考查了方差:它描述了数据对平均数的离散程度.也考查了中位数、平均数和众数的概念.5、D【分析】①②构造辅助圆,利用圆周角定理解决问题即可;

③想办法证明BD=AD即可;

④想办法证明∠BAD=45°即可解决问题.【详解】解:如图,由题意:,以A为圆心AB为半径,作⊙A.∵

∴,故①②正确,当时,∠DAC=∠C,

∵∠BAD+∠DAC=90°,∠ABD+∠C=90°,

∴∠BAD=∠ABD,

∴BD=AD,

∵AB=AD,

∴AB=AD=BD,

∴△ABD是等边三角形,故③正确,

当时,∠ABD=∠ADB=67.5°,

∴∠BAD=180°−2×67.5°=45°,

∴∠DAE=∠BAD=45°,

∵AB=AE,AD=AD,

∴△BAD≌△EAD(SAS),∴,故④正确.

故选:D.【点睛】本题考查全等三角形的判定和性质,圆周角定理,等腰三角形的性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.6、D【分析】首先将分子、分母进行因式分解,然后根据分式的基本性质约分.【详解】解:,故选D.7、A【分析】根据分子等于零,且分母不等于零列式求解即可.【详解】由题意得a-1=0且1a+b≠0,解得a=1,b≠-1.故选A.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.8、C【分析】易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC【详解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.9、D【解析】试题分析:在△ABC中,∠A=36°,AB=AC,求得∠ABC=∠C=72°,且△ABC是等腰三角形;因为CD是△ABC的角平分线,所以∠ACD=∠DCB=36°,所以△ACD是等腰三角形;在△BDC中,由三角形的内角和求出∠BDC=72°,所以△BDC是等腰三角形;所以BD=BC=BE,所以△BDE是等腰三角形;所以∠BDE=72°,∠ADE=36°,所以△ADE是等腰三角形.共5个.故选D考点:角平分线,三角形的内角和、外角和,平角10、C【分析】根据三角形中线的定义可知.【详解】因为,所以一定是的中线.【点睛】本题考查三角形的中线,掌握三角形中线的定义是解题的关键.11、C【解析】选项A,3+4<8,根据三角形的三边关系可知,不能够组成三角形;选项B,2+3=5,根据三角形的三边关系可知,不能够组成三角形;选项C,+>5,根据三角形的三边关系可知,能够组成三角形;选项D,5+5=10,根据三角形的三边关系可知,不能够组成三角形;故选C.12、C【分析】已知三角形两边的长和第三边的高,未明确这个三角形为钝角三角形还是锐角三角形,所以需分情况讨论,即∠BAC是钝角还是锐角,然后利用勾股定理求解.【详解】解:①如图1,当△ABC为锐角三角形时,在Rt△ABD中,AB=15,AD=12,由勾股定理得

BD===9,

在Rt△ADC中,AC=20,AD=12,由勾股定理得DC===16,∴BC=BD+DC=9+16=1.

②如图2,当△ABC为钝角三角形时,同①可得BD=9,DC=16,∴BC=CD-BD=2.

故选:C.【点睛】本题考查了勾股定理,同时注意,当题中无图时要注意分类讨论,如本题中已知条件中没有明确三角形的形状,要分三角形为锐角三角形和钝角三角形两种情况求解,避免漏解.二、填空题(每题4分,共24分)13、9【分析】利用三角形的内角和求出∠A,余角的定义求出∠ACD,然后利用含30度角的直角三角形性质求出AC=2AD,AB=2AC即可..【详解】解:∵CD⊥AB,∠ACB=90°,∴∠ADC=∠ACB=90°又∵在三角形ABC中,∠B=30°∴∠A=90°-∠B=60°,AB=2AC又∵∠ADC=90°∴∠ACD=90°-∠A=30°∴AD=AC,即AC=6∴AB=2AC=12∴BD=AB-AD=12-3=9【点睛】本题主要考查了含30度角的直角三角形性质以及三角形内角和定理,解题的关键在于灵活应用含30度角的直角三角形性质.14、64°【解析】解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD和CE是△ABC的两条角平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°.故答案为64°.点睛:本题考查的是三角形内角和定理、角平分线的定义,掌握三角形内角和等于180°是解题的关键.15、1【分析】由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=38°,可得∠E度数.【详解】解:如图,记矩形的对角线的交点为,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,∠E=∠DAE,∠ADB=∠CAD=38°,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=1°.故答案为:1.【点睛】本题主要考查矩形性质,等腰三角形的性质,平行线的性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.16、乙【分析】根据方差的定义,方差越小数据越稳定即可得出答案.【详解】解:∵,,∴,∴成绩比较稳定的是乙;

故答案为:乙.【点睛】本题考查根据方差判断稳定性.方差能够反映所有数据的信息方差越大,数据波动越大,数据越不稳定;方差越小,数据波动越小,数据越稳定.只有当两组数据的平均数相等或接近时,才能用方差比较它们波动的大小.17、2【分析】在Rt△ABC中,利用勾股定理可求出BC的长度,即可解决问题.【详解】解:∵在Rt△ABC中,∠C=10°,AB=15,AC=12,∴BC===1.∴S△ABC=×1×12=2故答案为:2.【点睛】本题考查勾股定理的知识,属于基础题,解题关键是掌握勾股定理的形式.18、-1【分析】根据分式的解为0的条件,即可得到答案.【详解】解:∵分式的值为零,∴,解得:,∴;故答案为:.【点睛】本题主要考查分式的值为0的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.三、解答题(共78分)19、(1),;(2);(3)【分析】(1)把M(3,a)代入求得,把M(3,3)代入y=kx,即可求得k的值;(2)由M(3,3)根据图象即可求得;(3)先求出AM的长度,作MN⊥x轴于N,根据勾股定理求出BN的长度即可得答案.【详解】解:∵直线与直线的交点为,在直线上,也在直线上,将的坐标代入,得,解得.∴点M的坐标为,将的坐标代入,得,解得.(2)因为:所以利用图像得的解集是.(3)作MN⊥轴于N,∵直线与轴的交点为A,∴A(0,),∵M(3,3),∴,∵MN=3,MB=MA,∴,所以:∴.(如图3).【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理的应用,数形结合是解题的关键.20、(1)答案见解析;(2)8【解析】(1)由题意根据全等三角形的判定定理运用ASA,即可证得;(2)根据题意利用全等三角形的性质结合三角形等底等高面积相等,进行分析即可求解.【详解】解:(1)∵是边上的中线,∴,∵,∴(内错角),∵,,(对顶角),∴(ASA).(2)∵,AD=AD,是边上的中线,∴,∵是边上的中点,∴(等底等高),∵,∴.∴的面积为:8.【点睛】本题考查全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.21、(1)见解析;(2)【分析】(1)分别作出点B与点C关于x轴的对称点,再与点A首尾顺次连接即可得.

(2)利用勾股定理进行计算可得线段DF的长.【详解】解:(1)如图所示,△DEF即为所求;(2)由勾股定理得,线段DF的长为=.【点睛】本题考查作图-轴对称变换,解题关键是熟练掌握轴对称变换的定义和性质.22、(1)购进甲型号口罩300袋,购进乙种型号口罩200袋;(2)每袋乙种型号的口罩最多打9折【解析】(1)设小明爸爸的商店购进甲种型号口罩x袋,乙种型号口罩y袋,根据“小明的爸爸用12000元购进甲、乙两种型号的口罩,销售完后共获利2700元”列出方程组,解方程组即可求解;(2)设每袋乙种型号的口罩打m折,根据“两种型号的口罩全部售完,要使第二次销售活动获利不少于2460元”列出不等式,解不等式即可求解.【详解】(1)设小明爸爸的商店购进甲种型号口罩x袋,乙种型号口罩y袋,根据题意可得,,解得:,答:该商店购进甲种型号口罩300袋,乙种型号口罩200袋;(2)设每袋乙种型号的口罩打m折,由题意可得,300×5+400(0.1m×36-30)≥2460,解得:m≥9,答:每袋乙种型号的口罩最多打9折.【点睛】本题考查了二元一次方程组的应用及一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系,列出方程组或不等式求解.23、0【分析】首先计算乘方,然后计算除法,最后从左向右依次计算,求出算式的值是多少即可.【详解】原式=1+21+=0【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.24、2【分析】根据等边对等角可得∠B=∠C,再利用三角形的内角和定理求出∠BAC=120°,然后求出∠CAD=30°,从而得到∠CAD=∠C,根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论