2022年江苏省无锡市查桥中学八年级数学第一学期期末检测试题含解析_第1页
2022年江苏省无锡市查桥中学八年级数学第一学期期末检测试题含解析_第2页
2022年江苏省无锡市查桥中学八年级数学第一学期期末检测试题含解析_第3页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.一只因损坏而倾斜的椅子,从背后看到的形状如图,其中两组对边的平行关系没有发生变化,若º,则的大小是A.75º B.115º C.65º D.105º2.下列计算:,其中结果正确的个数为()A.1 B.2 C.3 D.43.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数(单位:cm)与方差,要从中选择一名成绩好又发挥稳定的运动员参加决赛,最合适的是()甲乙丙丁平均数610585610585方差12.513.52.45.4A.甲 B.乙 C.丙 D.丁4.下列各式中,从左到右的变形是因式分解的是()A. B.C. D.5.的整数部分是,小数部分是,则的值是()A.7 B.1 C. D.106.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学计数法表示为A.6.5×107 B.6.5×10-6 C.6.5×10-8 D.6.5×10-77.已知直角三角形纸片的两条直角边长分别为和,过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则()A. B.C. D.8.使分式有意义的x的取值范围是()A.x=2 B.x≠2且x≠0 C.x=0 D.x≠29.若am=8,an=16,则am+n的值为()A.32 B.64 C.128 D.25610.分式与的最简公分母是A.ab B.3ab C. D.11.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是A. B. C. D.12.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,这两个对应三角形(如图)的对应点所具有的性质是().A.对应点所连线段都相等 B.对应点所连线段被对称轴平分C.对应点连线与对称轴垂直 D.对应点连线互相平行二、填空题(每题4分,共24分)13.我们用[m]表示不大于m的最大整数,如:[2]=2,[4.1]=4,[1.99]=1.(1)=_____;(2)若[1+,则x的取值范围是_____.14.如图,点B,A,D,E在同一条直线上,AB=DE,BC∥EF,请你利用“ASA”添加一个条件,使△ABC≌△DEF,你添加的条件是_____.15.若是完全平方公式,则__________.16.如图,在中,∠A=60°,D是BC边上的中点,DE⊥BC,∠ABC的平分线BF交DE于内一点P,连接PC,若∠ACP=m°,∠ABP=n°,则m、n之间的关系为______.17.如图,在四边形中,,,,,点是的中点.则______.18.已知和一点,,,,则______.三、解答题(共78分)19.(8分)如图1,在中,,,直线经过点,且于点,于点.易得(不需要证明).(1)当直线绕点旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时之间的数量关系,并说明理由;(2)当直线绕点旋转到图3的位置时,其余条件不变,请直接写出此时之间的数量关系(不需要证明).20.(8分)如图,某中学校园内有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,学校计划在中间留一块边长为(a+b)米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a、b的代数式表示)(2)当a=2,b=4时,求绿化的面积.21.(8分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.(1)求线段AB的表达式,并写出自变量x的取值范围;(2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?22.(10分)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.我市某汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?23.(10分)两个工程队共同参与一项筑路工程,若先由甲、乙两队合作天,剩下的工程再由乙队单独做天可以完成,共需施工费万元;若由甲、乙合作完成此项工程共需天,共需施工费万元.(1)求乙队单独完成这项工程需多少天?(2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过万元,则乙队最少施工多少天?24.(10分)小明和小强两名运动爱好者周末相约到滨江大道进行跑步锻炼.(1)周六早上6点,小明和小强同时从家出发,分别骑自行车和步行到离家距离分别为4500米和1200米的滨江大道入口汇合,结果同时到达.若小明每分钟比小强多行220米,求小明和小强的速度分别是多少米/分?(2)两人到达滨江大道后约定先跑1000米再休息.小强的跑步速度是小明跑步速度的倍,两人在同起点,同时出发,结果小强先到目的地分钟.①当,时,求小强跑了多少分钟?②小明的跑步速度为_______米/分(直接用含的式子表示).25.(12分)某校为了培养学生学习数学的兴趣,举办“我爱数学”比赛,现有甲、乙、丙三个小组进入决赛.评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:比赛项目比赛成绩/分甲乙丙研究报告908379小组展示857982答辩748491(1)如果根据三个方面的平均成绩确定名次,那么哪个小组获得此次比赛的冠军?(2)如果将研究报告、小组展示、答辩三项得分按4:3:3的比例确定各小组的成绩,此时哪个小组获得此次比赛的冠军?26.如图,一次函数y1=1x﹣1的图象与y轴交于点A,一次函数y1的图象与y轴交于点B(0,6),点C为两函数图象交点,且点C的横坐标为1.(1)求一次函数y1的函数解析式;(1)求△ABC的面积;(3)问:在坐标轴上,是否存在一点P,使得S△ACP=1S△ABC,请直接写出点P的坐标.

参考答案一、选择题(每题4分,共48分)1、D【详解】∵AD∥BC,∠1=75°,∴∠3=∠1=75°,∵AB∥CD,∴∠2=180°-∠3=180°-75°=105°.故选D.2、D【解析】根据二次根式的运算法则即可进行判断.【详解】,正确;正确;正确;,正确,故选D.【点睛】此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质:;.3、C【分析】首先比较平均数,平均数相同时,选择方差较小的运动员参加.【详解】∵乙和丁的平均数最小,∴从甲和丙中选择一人参加比赛.∵丙的方差最小,∴选择丙参赛.故选:C.【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、D【分析】根据因式分解的意义(把一个多项式化成几个整式的积的形式,这个过程叫因式分解)逐个判断即可.【详解】解:A、是整式的乘法,不是因式分解,故本选项不符合题意;

B、右边不是积的形式,所以不是因式分解,故本选项不符合题意;

C、是整式的乘法,不是因式分解,故本选项不符合题意;

D、是因式分解,故本选项符合题意;

故选:D.【点睛】本题考查了因式分解的定义,能正确理解因式分解的定义是解此题的关键.5、B【分析】由的整数部分是,小数部分是,即可得出x、y的值,然后代入求值即可.【详解】解:∵,∴的整数部分,小数部分,∴.故选:B.【点睛】本题主要考查实数,关键是运用求一个平方根的整数部分和小数部分的方法得出未知数的值,然后代入求值即可.6、D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:.

故答案为D.【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、B【分析】作图,根据等腰三角形的性质和勾股定理可得,整理即可求解【详解】解:如图,

故选:B.【点睛】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.8、D【解析】根据分母不等于零列式求解即可.【详解】由题意得2x-4≠0,∴x≠2.故选D.【点睛】本题考查了分式有意义的条件,当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.9、C【分析】逆用同底数幂的乘法公式可得,再整体代入求值即可.【详解】当am=8,an=16时,,故选C.【点睛】计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.10、C【分析】确定最简公分母的方法是:①取各分母系数的最小公倍数;②凡单独出现的字母连同它的指数作为最简公分母的一个因式;③同底数幂取次数最高的,得到的因式的积就是最简公分母.【详解】∵分式与的分母分别是a2b、3ab2,∴最简公分母是3a2b2.故选C.【点睛】本题考查了最简公分母的定义,熟练掌握最简公分母的定义是解答本题的关键.通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母.11、A【解析】试题分析:列车提速前行驶skm用的时间是小时,列车提速后行驶s+50km用的时间是小时,因为列车提速前行驶skm和列车提速后行驶s+50km时间相同,所以列方程是.故选A.考点:由实际问题抽象出分式方程.12、B【分析】直接利用轴对称图形的性质得出对应点之间的关系.【详解】轴对称图形是把图形沿着某条直线对折,直线两旁的部分能够完全重合的图形,而这条直线叫做对称轴,由题意知,两图形关于直线对称,则这两图形的对应点连线被对称轴直线垂直平分,当图形平移后,两图形的对应点连线只被对称轴直线平分.故选B.【点睛】本题主要考查轴对称图形的性质,熟悉掌握性质是关键.二、填空题(每题4分,共24分)13、1【分析】(1)由≈1.414,及题中所给信息,可得答案;(2)先解出的取值范围后得出x的取值范围.【详解】解:(1)≈1.414,由题中所给信息,可得=1;(2)由题意得:6≤<7,可得:1≤<4,可得:9≤x<16.【点睛】本题主要考查新定义及不等式的性质,找出规律是解题的关键14、【分析】由平行线的性质得出∠B=∠E,由ASA即可得出△ABC≌△DEF.【详解】解:添加条件:,理由如下:∵BC∥EF,∴∠B=∠E,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA);故答案为:【点睛】本题主要考查利用ASA判定三角形全等,找到另外一组相等角是解题的关键.15、【分析】根据乘积二倍项和已知平方项确定出这两个数为和,再利用完全平方式求解即可.【详解】解:,.故答案为:16.【点睛】本题主要了完全平方式,根据乘积二倍项确定出这两个数是求解的关键.16、m+3n=1【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m、n之间的关系.【详解】解:∵点D是BC边的中点,DE⊥BC,∴PB=PC,∴∠PBC=∠PCB,∵BP平分∠ABC,∴∠PBC=∠ABP,∴∠PBC=∠PCB=∠ABP=n°,∵∠A=60°,∠ACP=m°,∴∠PBC+∠PCB+∠ABP=1°-m°,∴3∠ABP=1°-m°,∴3n°+m°=1°,故答案为:m+3n=1.【点睛】本题主要考查了三角形内角和定理以及线段垂直平分线的性质的运用,角平分线的定义,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等;三角形内角和等于180°.17、【分析】延长BC

到E

使BE=AD,则四边形ABED是平行四边形,根据三角形的中位线的性质得到,答案即可解得.【详解】解:延长BC

到E,

使BE=AD,∵,∴四边形ABED是平行四边形,∵,,

∴C是BE的中点,

∵M是BD的中点,

又∵,∴,故答案为:.【点睛】本题考查了平行四边形的判定,三角形的中位线定理,正确的作出辅助线是解题的关键.18、40或80【分析】分两种情形:当点O在△ABC内部时或外部时分别求解.【详解】如图,当点O在△ABC内部时,

∵OA=OB=OC,,,

∴∠OAB=∠OBA=20°,∠OBC=∠OCB=30°,

∴∠AOC=∠1+∠2=∠OAB+∠OBA+∠OBC+∠OCB=100°,∴∠OCA==40°;

如图,当点O在△ABC外部时,

∵OA=OB=OC,,,

∴∠OAB=∠OBA=20°,∠OBC=∠OCB=30°,

∴∠AOC=∠DOC-∠DOA=∠OBC+∠OCB-(∠OAB+∠OBA),∴∠OCA==80°.故答案为:40或80.【点睛】本题考查了等腰三角形的性质,三角形的外角性质等知识,解题的关键是灵活运用所学知识解决问题.三、解答题(共78分)19、(1)不成立,DE=AD-BE,理由见解析;(2)DE=BE-AD【分析】(1)DE、AD、BE之间的数量关系是DE=AD-BE.由垂直的性质可得到∠CAD=∠BCE,证得△ACD≌△CBE,得到AD=CE,CD=BE,即有DE=AD-BE;

(2)DE、AD、BE之间的关系是DE=BE-AD.证明的方法与(1)一样.【详解】(1)不成立.

DE、AD、BE之间的数量关系是DE=AD-BE,理由如下:如图,

∵∠ACB=90°,BE⊥CE,AD⊥CE,,

∴∠ACD+∠CAD=90°,

又∠ACD+∠BCE=90°,

∴∠CAD=∠BCE,

在△ACD和△CBE中,,

∴△ACD≌△CBE(AAS),

∴AD=CE,CD=BE,

∴DE=CE-CD=AD-BE;(2)结论:DE=BE-AD.

∵∠ACB=90°,BE⊥CE,AD⊥CE,,

∴∠ACD+∠CAD=90°,

又∠ACD+∠BCE=90°,

∴∠CAD=∠BCE,

在△ACD和△CBE中,,∴△ADC≌△CEB(AAS),

∴AD=CE,DC=BE,

∴DE=CD-CE=BE-AD.【点睛】本题考查了旋转的性质、直角三角形全等的判定与性质,旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.20、(1)(5a2+3ab)平方米;(2)绿化面积是44平方米.【分析】(1)先找到绿化面积=矩形面积-正方形面积的等量关系,然后再利用多项式乘多项式法则以及完全平方公式化简即可解答;(2)将a与b的值代入(1)计算求值即可.【详解】解:(1)依题意得:(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=(5a2+3ab)平方米.答:绿化面积是(5a2+3ab)平方米;(2)当a=2,b=4时,原式=20+24=44(平方米).答:绿化面积是44平方米.【点睛】本题考查了多项式乘多项式以及整式的混合运算、化简求值,弄清题意列出代数式并进行化简是解答本题的关键.21、(1);(2)80米/分;(3)6分钟【分析】(1)根据图示,设线段AB的表达式为:y=kx+b,把把(4,240),(16,0)代入得到关于k,b的二元一次方程组,解之,即可得到答案,

(2)根据线段OA,求出甲的速度,根据图示可知:乙在点B处追上甲,根据速度=路程÷时间,计算求值即可,

(3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案.【详解】(1)根据题意得:

设线段AB的表达式为:y=kx+b(4≤x≤16),

把(4,240),(16,0)代入得:,

解得:,

即线段AB的表达式为:y=-20x+320(4≤x≤16),

(2)又线段OA可知:甲的速度为:=60(米/分),

乙的步行速度为:=80(米/分),

答:乙的步行速度为80米/分,

(3)在B处甲乙相遇时,与出发点的距离为:240+(16-4)×60=960(米),

与终点的距离为:2400-960=1440(米),

相遇后,到达终点甲所用的时间为:=24(分),

相遇后,到达终点乙所用的时间为:=18(分),

24-18=6(分),

答:乙比甲早6分钟到达终点.【点睛】本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键.22、今年1—5月份每辆车的销售价格是4万元.【解析】设今年1—5月份每辆车的销售价格是x万元,根据销售量相同列出方程,求解并检验即可.【详解】解:设今年1—5月份每辆车的销售价格是x万元,依题意得.解得.经检验,是原方程的解,并且符合题意.答:今年1—5月份每辆车的销售价格是4万元.【点睛】本题考查分式方程的应用,理解题意并找到合适的等量关系是解题关键.23、(1)乙队单独完成这项工程需90天;(2)甲队每天的施工费为15万元,乙队每天的施工费为8万元;(3)乙队最少施工30天【分析】(1)设乙队单独完成这项工程需x天,根据“甲、乙合作30天的工作量+乙队15天的工作量=1”列分式方程即可;(2)设甲队每天的施工费为a万元,乙队每天的施工费为b万元,根据题意列二元一次方程组即可求出a、b的值;(3)先求出甲的效率,设乙队施工y天,则甲队还需施工天完成任务,然后根据“总费用不超过万元”列出不等式即可得出结论.【详解】解:(1)设乙队单独完成这项工程需x天由题意可得:解得:x=90经检验:x=90是原方程的解答:乙队单独完成这项工程需90天.(2)设甲队每天的施工费为a万元,乙队每天的施工费为b万元由题意可知:解得:答:甲队每天的施工费为15万元,乙队每天的施工费为8万元.(3)甲的效率为设乙队施工y天,则甲队还需施工天完成任务根据题意可得15×+8y≤840解得:y≥30答:乙队最少施工30天.【点睛】此题考查的是分式方程的应用、二元一次方程组的应用和不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.24、(1)小强的速度为1米/分,小明的速度为2米/分;(2)①小强跑的时间为3分;②.【分析】(1)设小强的速度为x米/分,则小明的速度为(x+220)米/分,根据路程除以速度等于时间得到方程,解方程即可得到答案;(2)①设小明的速度为y米/分,由m=3,n=6,根据小明的时间-小强的时间=6列方程解答;②根据路程一定,时间与速度成反比,可求小强的时间进而求出小明的时间,再根据速度=路程除以时间得到答案.【详解】(1)设小强的速度为x米/分,则小明的速度为(x+220)米/分,根据题意得:=.解得:x=1.经检验,x=1是原方程的根,且符合题意.∴x+220=2.答:小强的速度为1米/分,小明的速度为2米/分.(2)①设小明的速度为y米/分,∵m=3,n=6,∴,解之得.经检验,是原方程的解,且符合题意,∴小强跑的时间为:(分)②小强跑的时间:分钟,小明跑的时间:分钟,小明的跑步速度为:分.故答案为:.【点睛】此题考查分式方程的应用,正确理解题意根据路程、时间、速度三者的关系列方程解答是解题的关键.25、(1)丙小组获得此次比赛的冠军;(2)甲小组的成绩最高

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论