2022年汕头市重点中学八年级数学第一学期期末统考模拟试题含解析_第1页
2022年汕头市重点中学八年级数学第一学期期末统考模拟试题含解析_第2页
2022年汕头市重点中学八年级数学第一学期期末统考模拟试题含解析_第3页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下图中为轴对称图形的是().A. B. C. D.2.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC④BA+BC=2BF其中正确的是()A.①②③ B.①③④ C.①②④ D.①②③④3.下列计算正确的是()A.a6÷a2=a3 B.(a3)2=a5C.25=±5 D.4.下面有4个汽车标志图案,其中不是轴对称图形的是()A. B. C. D.5.如图,点D,E分别在AC,AB上,BD与CE相交于点O,已知∠B=∠C,现添加下面的哪一个条件后,仍不能判定△ABD≌△ACE的是()A.AD=AE B.AB=AC C.BD=CE D.∠ADB=∠AEC6.如图,若为正整数,则表示的值的点落在()A.段① B.段② C.段③ D.段④7.设,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和58.2的平方根为()A.4 B.±4 C. D.±9.下列运算正确的是()A.x3+x3=2x6 B.x2·x4=x8C.(x2)3=x6 D.2x-2=10.下列倡导节约的图案中,是轴对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是__________.12.如图,和都是等腰三角形,且,当点在边上时,_________________度.13.如图是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个半圆柱而成,中间可供滑行部分的斜面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=4m,一滑行爱好者从A点滑行到E点,则他滑行的最短距离为____________m(的值为3)14.计算的结果是__________.15.若直角三角形的一个锐角为25°,则另一锐角为________.16.等腰三角形一腰上的高线与另一腰夹角为50°,则该三角形的顶角为_____.17.使分式有意义的x的取值范围是_____.18.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为______.三、解答题(共66分)19.(10分)已知a是2的相反数,计算|a一2|的值.20.(6分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?21.(6分)某商家预测“华为P30”手机能畅销,就用1600元购进一批该型号手机壳,面市后果然供不应求,又购进6000元的同种型号手机壳,第二批所购买手机壳的数量是第一批的3倍,但进货单价比第一批贵了2元.(1)第一批手机壳的进货单价是多少元?(2)若两次购进于机壳按同一价格销售,全部传完后,为使得获利不少于2000元,那么销售单价至少为多少?22.(8分)解方程:(1)(2).23.(8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=x的图象交点为C(m,4).(1)求一次函数y=kx+b的解析式;(2)求△BOC的面积;(3)若点D在第二象限,△DAB为等腰直角三角形,则点D的坐标为.24.(8分)解方程:=1.25.(10分)某校学生利用春假时间去距离学校10km的静园参观。一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达。已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度。26.(10分)计算:14+(3.14)0+÷

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据轴对称图形的定义可得.【详解】根据轴对称图形定义可得ABC选项均不是轴对称图形,D选项为轴对称图形.【点睛】轴对称图形沿对称轴折叠,左右两边能够完全重合.2、D【分析】易证,可得,AD=EC可得①②正确;再根据角平分线的性质可求得,即③正确,根据③可判断④正确;【详解】∵BD为∠ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBD中,BD=BC,∠ABD=∠CDB,BE=BA,∴△(SAS),故①正确;∵BD平分∠ABC,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE是等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,故③正确;作EG⊥BC,垂足为G,如图所示:∵E是BD上的点,∴EF=EG,在△BEG和△BEF中∴△BEG≌△BEF,∴BG=BF,在△CEG和△AFE中∴△CEG≌△AFE,∴AF=CG,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,故④正确;故选:D.【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;3、D【详解】解:A、a6÷a2=a6-2=a4≠a3,故本选项错误;B、(a3)2=a3×2=a6≠a5,故本选项错误;C、25=5,表示25的算术平方根式5,25≠±5,故本选项错误;D、3-8故选D.【点睛】本题考查立方根;算术平方根;幂的乘方与积的乘方;同底数幂的除法.4、D【分析】根据轴对称图形的定义和特征逐一判断即可.【详解】A、是轴对称图形,故该选项不符合题意,B、是轴对称图形,故该选项不符合题意,C、是轴对称图形,故该选项不符合题意,D、不是轴对称图形,故该选项符合题意,故选D.【点睛】本题考查轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;熟练掌握概念是解题关键.5、D【分析】用三角形全等的判定知识,便可求解.【详解】解:已知∠B=∠C,∠BAD=∠CAE,若添加AD=AE,可利用AAS定理证明△ABE≌△ACD,故A选项不合题意;若添加AB=AC,可利用ASA定理证明△ABE≌△ACD,故B选项不合题意;若添加BD=CE,可利用AAS定理证明△ABE≌△ACD,故C选项不合题意;若添加∠ADB=∠AEC,没有边的条件,则不能证明△ABE≌△ACD,故D选项合题意.故选:D.【点睛】熟悉全等三角形的判定定理,是必考的内容之一.6、B【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【详解】解∵1.又∵x为正整数,∴1,故表示的值的点落在②.故选B.【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.7、C【分析】首先得出的取值范围,进而得出-1的取值范围.【详解】∵,∴,故,故选C.【点睛】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.8、D【分析】利用平方根的定义求解即可.【详解】解:∵2的平方根是±.故选D.【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.9、C【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方运算法则和负整数指数幂的运算法则计算各项即得答案.【详解】解:A、x3+x3=2x3≠2x6,所以本选项运算错误;B、,所以本选项运算错误;C、(x2)3=x6,所以本选项运算正确;D、2x-2=,所以本选项运算错误.故选:C.【点睛】本题考查的是合并同类项、同底数幂的乘法、幂的乘方和负整数指数幂等运算法则,属于基础题型,熟练掌握基本知识是解题关键.10、C【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【详解】解:A、不是轴对称图形,故此选项错误;

B、不是轴对称图形,故此选项错误;

C、是轴对称图形,故此选项正确;

D、不是轴对称图形,故此选项错误.

故选C.【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题(每小题3分,共24分)11、47°【分析】首先过点C作CH∥DE交AB于H,即可得CH∥DE∥FG,然后利用两直线平行,同位角相等与余角的性质,即可求得∠β的度数.【详解】解:如图,过点C作CH∥DE交AB于H根据题意得:∠ACB=90°,DE∥FG,∴CH∥DE∥FG,∴∠BCH=∠α=43°,∴∠HCA=90°-∠BCH=47°,∴∠β=∠HCA=47°.【点睛】本题考查平行线的性质,难度不大,解题的关键是准确作出辅助线,掌握两直线平行,同位角相等定理的应用.12、1【分析】先根据“SAS”证明△ABE≌△CBD,从而∠BAE=∠C.再根据等腰三角形的两底角相等求出∠C的度数,然后即可求出∠BAE的度数.【详解】∵和都是等腰三角形,∴AB=BC,BE=BD,∵,∴∠ABE=∠CBD,在△ABE和△CBD中,∵AB=BC,∠ABE=∠CBD,BE=BD,∴△ABE≌△CBD,∴∠BAE=∠C.∵AB=BC,∠ABC=100°,∴∠C=(180°-100°)÷2=1°,∴∠BAE=1°.故答案为:1.【点睛】本题主要考查了等腰三角形的定义,以及全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.13、1【分析】要使滑行的距离最短,则沿着AE的线段滑行,先将半圆展开为矩形,展开后,A、D、E三点构成直角三角形,AE为斜边,AD和DE为直角边,求出AD和DE的长,再根据勾股定理求出AE的长度即可.【详解】将半圆面展开可得,如图所示:∵滑行部分的斜面是半径为4m的半圆∴AD=4π米,∵AB=CD=1m,CE=4m,∴DE=DC-CE=AB-CE=16米,

在Rt△ADE中,

AE=m.故答案为:1.【点睛】考查了勾股定理的应用和两点之间线段最短,解题关键是把U型池的侧面展开成矩形,“化曲面为平面”,再勾股定理求解.14、【分析】先算开方,再算乘法,最后算减法即可.【详解】故答案为:.【点睛】本题考查了无理数的混合运算,掌握无理数的混合运算法则是解题的关键.15、1°【分析】根据直角三角形两锐角互余列式计算即可得解.【详解】∵直角三角形的一个锐角为25°,∴它的另一个锐角为90°-25°=1°.故答案为1.【点睛】本题考查了直角三角形两锐角互余的性质,熟记性质是解题的关键.16、40°或140°【分析】分两种情况讨论:锐角三角形与钝角三角形,作出图形,互余和三角形的外角性质即可求解.【详解】解:如图1,三角形是锐角三角形时,∵∠ACD=50°,∴顶角∠A=90°﹣50°=40°;如图2,三角形是钝角形时,∵∠ACD=50°,∴顶角∠BAC=50°+90°=140°,综上所述,顶角等于40°或140°.故答案为:40°或140°.【点睛】本题考查根据等腰三角形的性质求角度,作出图形,分类讨论是解题的关键.17、x≠﹣1.【分析】直接利用分式有意义则分母不为零进而得出答案.【详解】解:∵分式有意义,∴x+1≠0,故x≠﹣1.故答案为:x≠﹣1.【点睛】本题主要考查分式有意义的条件,掌握分式有意义的条件是解题的关键.18、1【分析】连接,由于是等腰三角形,点是边的中点,故,根据三角形的面积公式求出的长,再根据是线段的垂直平分线可知,点关于直线的对称点为点,故的长为的最小值,由此即可得出结论.【详解】解:连接,是等腰三角形,点是边的中点,,,解得,是线段的垂直平分线,点关于直线的对称点为点,的长为的最小值,的周长最短.故答案为:1.【点睛】本题考查的是轴对称最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.三、解答题(共66分)19、4【分析】根据相反数的概念及绝对值的运算法则计算即可.【详解】解:∵a是2的相反数,∴a=-2,∴|a一2|=|-2-2|=|-4|=4【点睛】本题考查相反数的含义、有理数的加减运算、及去绝对值法则,掌握运算法则是基础.20、(1)打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)打折后购买这批粽子比不打折节省了3640元.【分析】(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据“打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据节省钱数=原价购买所需钱数-打折后购买所需钱数,即可求出节省的钱数.【详解】(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据题意得:,解得:.答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).答:打折后购买这批粽子比不打折节省了3640元.【点睛】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.21、(1)8元;(2)1元.【分析】(1)设第一批手机壳进货单价为x元,则第二批手机壳进货单价为(x+2)元,根据单价=总价÷单价,结合第二批手机壳的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;

(2)设销售单价为m元,根据获利不少于2000元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【详解】解:(1)设第一批手机壳进货单价为x元,

根据题意得:3•=,

解得:x=8,

经检验,x=8是分式方程的解.

答:第一批手机壳的进货单价是8元;

(2)设销售单价为m元,

根据题意得:200(m-8)+600(m-10)≥2000,

解得:m≥1.

答:销售单价至少为1元.【点睛】本题考查分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22、(1)x=2;(2)x=2是增根,分式方程无解.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:(1)去分母得:x2﹣2x+2=x2﹣x,移项合并得:﹣x=﹣2,解得:x=2,经检验x=2是分式方程的解;(2)去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解.【点睛】本题考查的知识点是解分式方程,掌握解分式方程的一般步骤是解此题的关键,需注意方式方程最后要验根.23、(1)y=x+2;(2)3;(3)(﹣2,5)或(﹣5,3)或(,).【分析】(1)把C点坐标代入正比例函数解析式可求得m,再把A、C坐标代入一次函数解析式可求得k、b,可求得答案;(2)先求出点B的坐标,然后根据三角形的面积公式即可得到结论;(3)由题意可分AB为直角边和AB为斜边两种情况,当AB为直角边时,再分A为直角顶点和B为直角顶点两种情况,此时分别设对应的D点为D2和D1,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,可证明△BED1≌△AOB(AAS),可求得D1的坐标,同理可求得D2的坐标,AD1与BD2的交点D3就是AB为斜边时的直角顶点,据此即可得出D点的坐标.【详解】(1)∵点C(m,4)在正比例函数y=x的图象上,∴m=4,解得:m=3,∴C(3,4),∵点C(3,4)、A(﹣3,0)在一次函数y=kx+b的图象上,∴,解得,∴一次函数的解析式为y=x+2;(2)在y=x+2中,令x=0,解得y=2,∴B(0,2),∴S△BOC=×2×3=3;(3)分AB为直角边和AB为斜边两种情况,当AB为直角边时,分A为直角顶点和B为直角顶点两种情况,如图,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,∵点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,∴AB=BD1,∵∠D1BE+∠ABO=90°,∠ABO+∠BAO=90°,∴∠BAO=∠EBD1,∵在△BED1和△AOB中,,∴△BED1≌△AOB(AAS),∴BE=AO=3,D1E=BO=2,∴OE=OB+BE=2+3=5,∴点D1的坐标为(﹣2,5);同理可得出:△AFD2≌△AOB,∴FA=BO=2,D2F=AO=3,∴点D2的坐标为(﹣5,3),当AB为斜边时,如图,∵∠D1AB=∠D2BA=45°,∴∠AD3B=90°,设AD1的解析式为y=k1x+b1,将A(-3,0)、D1(-2,5)代入得,解得:,所以AD1的解析式为:y=5x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论