




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年广东省惠州市某学校数学高职单招模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.已知A(1,1),B(-1,5)且,则C的坐标为()A.(0,3)B.(2,-4)C.(1,-2)D.(0,6)
2.已知等差数列的前n项和是,若,则等于()A.
B.
C.
D.
3.设a,b为正实数,则“a>b>1”是“㏒2a>㏒2b>0的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条
4.sin750°=()A.-1/2
B.1/2
C.
D.
5.设a=1/2,b=5-1/2则()A.a>bB.a=bC.a<bD.不能确定
6.函数y=lg(x+1)的定义域是()A.(-∞,-1)B.(-∞,1)C.(-l,+∞)D.(1,+∞)
7.若a0.6<a<a0.4,则a的取值范围为()</aA.a>1B.0<a<1C.a>0D.无法确定
8.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.7
9.已知等差数列中{an}中,a3=4,a11=16,则a7=()A.18B.8C.10D.12
10.直线l:x-2y+2=0过椭圆的左焦点F1和上顶点B,该椭圆的离心率为()A.1/5
B.2/5
C.
D.
二、填空题(10题)11.等差数列的前n项和_____.
12.设AB是异面直线a,b的公垂线段,已知AB=2,a与b所成角为30°,在a上取线段AP=4,则点P到直线b的距离为_____.
13.不等式(x-4)(x+5)>0的解集是
。
14.圆x2+y2-4x-6y+4=0的半径是_____.
15.设{an}是公比为q的等比数列,且a2=2,a4=4成等差数列,则q=
。
16.
17.
18.函数f(x)=sin2x-cos2x的最小正周期是_____.
19.双曲线3x2-y2=3的渐近线方程是
。
20.
三、计算题(5题)21.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
22.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
23.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
24.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
25.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
四、证明题(5题)26.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
27.△ABC的三边分别为a,b,c,为且,求证∠C=
28.己知
a
=(-1,2),b
=(-2,1),证明:cos〈a,b〉=4/5.
29.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
30.若x∈(0,1),求证:log3X3<log3X<X3.
五、简答题(5题)31.组成等差数列的三个正数的和等于15,并且这三个数列分别加上1、3、5后又成等比数列,求这三个数
32.某篮球运动员进行投篮测验,每次投中的概率是0.9,假设每次投篮之间没有影响(1)求该运动员投篮三次都投中的概率(2)求该运动员投篮三次至少一次投中的概率
33.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
34.证明上是增函数
35.证明:函数是奇函数
六、综合题(5题)36.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
37.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
38.
39.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
40.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
参考答案
1.A
2.D设t=2n-1,则St=t(t+1+1)=t(t+2),故Sn=n(n+2)。
3.A充要条件.若a>b>1,那么㏒2a>㏒2b>0;若㏒2a>㏒26>0,那么a>b>l
4.B利用诱导公式化简求值∵sinθ=sin(k×360°+θ)(k∈Z)∴sin750°=sin(2×360°+30°)=sin30°=1/2.
5.A数值的大小判断
6.C函数的定义.x+1>0所以.x>-1.
7.B已知函数是指数函数,当a在(0,1)范围内时函数单调递减,所以选B。
8.C分层抽样方法.四类食品的比例为4:1:3:2,则抽取的植物油类的数量为20×1/10=2,抽取的果蔬类的数量为20×2/10=4,二者之和为6,
9.C等差数列的性质∵{an}为等差数列,∴2a7=a3+a11=20,∴a7=10.
10.D直线与椭圆的性质,离心率公式.直线l:x-2y+2=0与x轴的交点F1(-2,0),与y轴的交点B(0,1),由于椭圆的左焦点为F1,上顶点为B,则c=2,b=1,∴a=
11.2n,
12.
,以直线b和A作平面,作P在该平面上的垂点D,作DC垂直b于C,则有PD=,BD=4,DC=2,因此PC=,(PC为垂直于b的直线).
13.{x|x>4或x<-5}方程的根为x=4或x=-5,所以不等式的解集为{x|x>4或x<-5}。
14.3,
15.
,由于是等比数列,所以a4=q2a2,得q=。
16.(3,-4)
17.外心
18.πf(x)=2(1/2sin2x-1/2cos2x)=2sin(2x-π/4),因此最小正周期为π。
19.
,
20.
21.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
22.
23.
24.
25.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
26.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
27.
28.
29.
30.
31.
32.(1)P=0.9×0.9×0.9=0.729(2)P=1-0.1×0.1×0.1=0.999
33.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。
(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,
34.证明:任取且x1<x2∴即∴在是增函数
35.证明:∵∴则,此函数为奇函数
36.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为
37.
38.
39.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年硼化物陶瓷粉体项目申请报告模板
- 2025至2030年中国3D立体视频眼镜行业投资前景及策略咨询报告
- 2025年鱼丸项目申请报告模板
- 研究生教育质量监督保障机制研究
- 高效太阳能电池生产线项目可行性研究报告(范文参考)
- 2025年高性能特种合金材料项目提案报告模板
- 大禹治水说课课件
- 2025商场店铺装修承包合同
- 成人自考专科题目及答案
- 超级奇葩题目及答案高中
- 检验科应急预案培训
- IATF16949-质量手册(过程方法无删减版)
- GB/T 35428-2024医院负压隔离病房环境控制要求
- 高中英语-人教-选修二-单词默写
- 江苏省苏州市昆山市2023-2024学年六年级下学期期末英语试卷
- 安徽省合肥市科大附中2025年第二次中考模拟初三数学试题试卷含解析
- 2024年山东省德州经开区小升初数学试卷
- 2025数学步步高大一轮复习讲义人教A版复习讲义含答案
- NBT-10781-2021空气源热泵污泥干化机
- HY/T 0409-2024近岸海域水质浮标实时监测技术规范
- 《正常分娩》课件
评论
0/150
提交评论