版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1已知函数,若对任意,总存在,使得成立,则实数的取值范围为( )ABCD2一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是 ( ) ABCD3已知函数是定义在上的偶函数,且在上单调递增,则( )ABCD4甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是( )A甲B乙C丙D丁5已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则下述四个结论:点为函数的一个对称中心其中所有正确结论的编号是( )ABCD6已知双曲线
3、的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若则该双曲线的离心率为A2B3CD7已知方程表示的曲线为的图象,对于函数有如下结论:在上单调递减;函数至少存在一个零点;的最大值为;若函数和图象关于原点对称,则由方程所确定;则正确命题序号为( )ABCD8连接双曲线及的4个顶点的四边形面积为,连接4个焦点的四边形的面积为,则当取得最大值时,双曲线的离心率为( )ABCD9过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是( )ABCD10已知斜率为2的直线l过抛物线C:的焦点F,且与抛物线交于A,B两点,若线段AB的中点M的纵坐标为1,则p( )A1B
4、C2D411复数满足 (为虚数单位),则的值是()ABCD12已知函数,若,对任意恒有,在区间上有且只有一个使,则的最大值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13记Sk1k+2k+3k+nk,当k1,2,3,时,观察下列等式:S1n2n,S2n3n2n,S3n4n3n2,S5An6n5n4+Bn2,可以推测,AB_14设全集,则_.15若x,y满足,则的最小值为_.16在中,已知是的中点,且,点满足,则的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知等差数列的公差,且,成等比数列(1)求数列的通项公式;(2)设,求数列
5、的前项和18(12分)已知是公比为的无穷等比数列,其前项和为,满足,_是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由从,这三个条件中任选一个,补充在上面问题中并作答19(12分)已知在中,a、b、c分别为角A、B、C的对边,且(1)求角A的值;(2)若,设角,周长为y,求的最大值20(12分)已知矩阵,且二阶矩阵M满足AMB,求M的特征值及属于各特征值的一个特征向量.21(12分)已知满足 ,且,求的值及的面积.(从,这三个条件中选一个,补充到上面问题中,并完成解答.)22(10分)已知函数,其中.(1)当时,求在的切线方程;(2)求证:的极大值恒大于0.参考答案一、选择题:本题
6、共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】将函数解析式化简,并求得,根据当时可得的值域;由函数在上单调递减可得的值域,结合存在性成立问题满足的集合关系,即可求得的取值范围.【详解】依题意,则,当时,故函数在上单调递增,当时,;而函数在上单调递减,故,则只需,故,解得,故实数的取值范围为.故选:C.【点睛】本题考查了导数在判断函数单调性中的应用,恒成立与存在性成立问题的综合应用,属于中档题.2D【解析】由三视图可知该几何体的直观图是轴截面在水平面上的半个圆锥,表面积为,故选D3C【解析】根据题意,由函数的奇偶性可得,又由,结合函数的单调性分
7、析可得答案【详解】根据题意,函数是定义在上的偶函数,则,有,又由在上单调递增,则有,故选C.【点睛】本题主要考查函数的奇偶性与单调性的综合应用,注意函数奇偶性的应用,属于基础题4C【解析】分别假设甲乙丙丁说的是真话,结合其他人的说法,看是否只有一个说的是真话,即可求得年纪最大者,即可求得答案.【详解】假设甲说的是真话,则年纪最大的是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,年纪最大的不是甲;假设乙说的是真话,则年纪最大的是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,年纪最大的也不是乙;假设丙说的是真话,则年纪最大的是
8、乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,年纪最大的也不是乙;假设丁说的是真话,则年纪最大的不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是年纪最大的,同时乙也说谎,说明乙也不是年纪最大的,年纪最大的只有一人,所以只有丙才是年纪最大的,故假设成立,年纪最大的是丙.综上所述,年纪最大的是丙故选:C.【点睛】本题考查合情推理,解题时可从一种情形出发,推理出矛盾的结论,说明这种情形不会发生,考查了分析能力和推理能力,属于中档题.5B【解析】首先根据三角函数的平移规则表示出,再根据对称性求出、,即可求出的解析式,从而验证可得;【详解】解:由题意可得,
9、又和的图象都关于对称,解得,即,又,正确,错误.故选:B【点睛】本题考查三角函数的性质的应用,三角函数的变换规则,属于基础题.6D【解析】本题首先可以通过题意画出图像并过点作垂线交于点,然后通过圆与双曲线的相关性质判断出三角形的形状并求出高的长度,的长度即点纵坐标,然后将点纵坐标带入圆的方程即可得出点坐标,最后将点坐标带入双曲线方程即可得出结果。【详解】根据题意可画出以上图像,过点作垂线并交于点,因为,在双曲线上,所以根据双曲线性质可知,即,因为圆的半径为,是圆的半径,所以,因为,所以,三角形是直角三角形,因为,所以,即点纵坐标为,将点纵坐标带入圆的方程中可得,解得,将点坐标带入双曲线中可得,
10、化简得,故选D。【点睛】本题考查了圆锥曲线的相关性质,主要考察了圆与双曲线的相关性质,考查了圆与双曲线的综合应用,考查了数形结合思想,体现了综合性,提高了学生的逻辑思维能力,是难题。7C【解析】分四类情况进行讨论,然后画出相对应的图象,由图象可以判断所给命题的真假性.【详解】(1)当时,此时不存在图象;(2)当时,此时为实轴为轴的双曲线一部分;(3)当时,此时为实轴为轴的双曲线一部分;(4)当时,此时为圆心在原点,半径为1的圆的一部分;画出的图象,由图象可得:对于,在上单调递减,所以正确;对于,函数与的图象没有交点,即没有零点,所以错误;对于,由函数图象的对称性可知错误;对于,函数和图象关于原
11、点对称,则中用代替,用代替,可得,所以正确.故选:C【点睛】本题主要考查了双曲线的简单几何性质,函数的图象与性质,函数的零点概念,考查了数形结合的数学思想.8D【解析】先求出四个顶点、四个焦点的坐标,四个顶点构成一个菱形,求出菱形的面积,四个焦点构成正方形,求出其面积,利用重要不等式求得取得最大值时有,从而求得其离心率.【详解】双曲线与互为共轭双曲线,四个顶点的坐标为,四个焦点的坐标为,四个顶点形成的四边形的面积,四个焦点连线形成的四边形的面积,所以,当取得最大值时有,离心率,故选:D.【点睛】该题考查的是有关双曲线的离心率的问题,涉及到的知识点有共轭双曲线的顶点,焦点,菱形面积公式,重要不等
12、式求最值,等轴双曲线的离心率,属于简单题目.9D【解析】如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,结合、可求离心率.【详解】如图,设双曲线的右焦点为,连接,连接并延长交右支于.因为,故四边形为平行四边形,故.又双曲线为中心对称图形,故.设,则,故,故.因为为直角三角形,故,解得.在中,有,所以.故选:D.【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.10C【解析】设直线l的方程为xy,与抛物线联立利用韦达定理可得p【详解】由已知得F(,0),设直线l的方程为xy,并与y22px
13、联立得y2pyp20,设A(x1,y1),B(x2,y2),AB的中点C(x0,y0),y1+y2p,又线段AB的中点M的纵坐标为1,则y0(y1+y2),所以p=2,故选C【点睛】本题主要考查了直线与抛物线的相交弦问题,利用韦达定理是解题的关键,属中档题11C【解析】直接利用复数的除法的运算法则化简求解即可【详解】由得:本题正确选项:【点睛】本题考查复数的除法的运算法则的应用,考查计算能力12C【解析】根据的零点和最值点列方程组,求得的表达式(用表示),根据在上有且只有一个最大值,求得的取值范围,求得对应的取值范围,由为整数对的取值进行验证,由此求得的最大值.【详解】由题意知,则其中,又在上
14、有且只有一个最大值,所以,得,即,所以,又,因此当时,此时取可使成立,当时,所以当或时,都成立,舍去;当时,此时取可使成立,当时,所以当或时,都成立,舍去;当时,此时取可使成立,当时,所以当时,成立;综上所得的最大值为故选:C【点睛】本小题主要考查三角函数的零点和最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】观察知各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,据此计算得到答案.【详解】根据所给的已知等式得到:各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,A,
15、A1,解得B,所以AB故答案为:【点睛】本题考查了归纳推理,意在考查学生的推理能力.14【解析】先求出集合,然后根据交集、补集的定义求解即可【详解】解:,或;故答案为:【点睛】本题主要考查集合的交集、补集运算,属于基础题155【解析】先作出可行域,再做直线,平移,找到使直线在y轴上截距最小的点,代入即得。【详解】作出不等式组表示的平面区域,如图,令,则,作出直线,平移直线,由图可得,当直线经过C点时,直线在y轴上的截距最小,由,可得,因此的最小值为.故答案为:4【点睛】本题考查不含参数的线性规划问题,是基础题。16【解析】由中点公式的向量形式可得,即有,设,有,再分别讨论三点共线和不共线时的情
16、况,找到的关系,即可根据函数知识求出范围【详解】是的中点,即设,于是(1)当共线时,因为,若点在之间,则,此时,;若点在的延长线上,则,此时,(2)当不共线时,根据余弦定理可得,解得,由,解得综上,故答案为:【点睛】本题主要考查学中点公式的向量形式和数量积的定义的应用,以及余弦定理的应用,涉及到函数思想和分类讨论思想的应用,解题关键是建立函数关系式,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2).【解析】(1)根据等比中项性质可构造方程求得,由等差数列通项公式可求得结果;(2)由(1)可得,可知为等比数列,利用分组求和法,结合等差和等比数列求和公式可
17、求得结果.【详解】(1)成等比数列,即,解得:,.(2)由(1)得:,数列是首项为,公比为的等比数列,【点睛】本题考查等差数列通项公式的求解、分组求和法求解数列的前项和的问题;关键是能够根据通项公式证得数列为等比数列,进而采用分组求和法,结合等差和等比数列求和公式求得结果.18见解析【解析】选择或或,求出的值,然后利用等比数列的求和公式可得出关于的不等式,判断不等式是否存在符合条件的正整数解,在有解的情况下,解出不等式,进而可得出结论.【详解】选择:因为,所以,所以令,即,所以使得的正整数的最小值为;选择:因为,所以,因为,所以不存在满足条件的正整数;选择:因为,所以,所以令,即,整理得当为偶
18、数时,原不等式无解;当为奇数时,原不等式等价于,所以使得的正整数的最小值为【点睛】本题考查了等比数列的通项公式求和公式,考查了推理能力与计算能力,属于中档题19(1);(2)【解析】(1)利用正弦定理,结合题中条件,可以得到,之后应用余弦定理即可求得;(2)利用正弦定理求得,求出三角形的周长,利用三角函数的最值求解即可.【详解】(1)由已知可得,结合正弦定理可得,又,(2)由,及正弦定理得,故,即,由,得,当,即时,【点睛】该题主要考查的是有关解三角形的问题,解题的关键是掌握正余弦定理,属于简单题目.20特征值为1,特征向量为【解析】设出矩阵M结合矩阵运算和矩阵相等的条件可求矩阵M,然后利用可求特征值的另一个特征向量.【详解】设矩阵M,则AM,所以,解得,所以M,则矩阵M的特征方程为,解得,即特征值为1,设特征值的特征向量为,则,即,解得x0,所以属于特征值的的一个特征向量为【点睛】本题主要考查矩阵的运算及特征量的求解,矩阵运算的关键是明确其运算规则,侧重考查数学运算的核心素养.21见解析【解析】选择时:,,计算,根据正弦定理得到,计算面积得到答案;选择时,故,为钝角,故无解;选择时,根据正弦定理解得,根据正弦定理得到,计算面积得到答案.【详解】选择时:,,故.根据正弦定理:,故,故.选择时,故,为钝角,故无解.选择时,根据正弦定理:,故,解得,.根据正弦定理:,故,故.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 语文学科核心素养的内涵
- 增城市英语短文语法填空阅读理解高考一轮训练及答案( 高考)
- 高考志愿填报的方法与技巧图文
- 三年级心理健康教育教案--学案教案
- 中学生心理健康教案
- 全省小学数学教师赛课一等奖数学一年级上册(人教2024年新编)《数学游戏》课件
- 高中物理第一章静电场课时5电势差课件新人教版选修3-
- 2024至2030年中国弹力亚麻棉数据监测研究报告
- 2024至2030年中国干式温度槽行业投资前景及策略咨询研究报告
- 2024至2030年中国天然蔺草荞麦枕数据监测研究报告
- 吹脱、气提与萃取(宋银强、朱世林)课件
- 简历的制作课件
- 达芬奇-完整精讲版课件
- 标准QZY 0017 S-2022 魔芋豆腐制作规范
- 大学生职业生涯规划之自我探索技能(共93张)课件
- 《美容药物学》课程教学大纲
- 人教版五年级数学上册课件滚动练习2
- 四年级上册数学课件-4.6 整数的四则运算(运算定律-加法结合律)▏沪教版 (共9张PPT)
- 人民武装部公开招聘工作人员报名登记表
- 学校危房拆除申请书
- 人美版小学二年级上册美术全册精品课件
评论
0/150
提交评论