版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是( )A30,28 B26,26 C31,30 D26,222对于数据:6,3,4,7,6,0,1下列判断中正确的是( )A这组数据的平均数是6
2、,中位数是6B这组数据的平均数是6,中位数是7C这组数据的平均数是5,中位数是6D这组数据的平均数是5,中位数是73如果代数式有意义,则实数x的取值范围是( )Ax3Bx0Cx3且x0Dx34化简的结果是()A1BCD5已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是( )Ak2且k1Bk2且k1Ck=2Dk=2或16下列运算正确的是()A =2B4=1C=9D=27如图,小明将一张长为20cm,宽为15cm的长方形纸(AEDE)剪去了一角,量得AB3cm,CD4cm,则剪去的直角三角形的斜边长为()A5cmB12cmC16cmD20cm8已知M,N,P,Q四点的
3、位置如图所示,下列结论中,正确的是( )ANOQ42BNOP132CPON比MOQ大DMOQ与MOP互补9在实数0,4中,最小的数是( )A0BCD410 (3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A2BC5D11计算(-1)2的结果是( )A-2B-1C1D212如图,在ABC中,C=90,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,MPQ的面积大小变化情况是( )A一直增大B一直减小C先减小后增大D
4、先增大后减小二、填空题:(本大题共6个小题,每小题4分,共24分)13分解因式:ax2a=_14平面直角坐标系中一点P(m3,12m)在第三象限,则m的取值范围是_15如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上如果它们外缘边上的公共点P在小量角器上对应的度数为65,那么在大量角器上对应的度数为_度(只需写出090的角度)16如图,在ABC中,AB=AC,以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD,若A=32,则CDB的大小为_度17如图,已知在RtABC中,ACB90,AB4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则
5、S1S2等_18当a3时,代数式的值是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某校为了解本校九年级男生体育测试中跳绳成绩的情况,随机抽取该校九年级若干名男生,调查他们的跳绳成绩(次/分),按成绩分成,五个等级将所得数据绘制成如下统计图根据图中信息,解答下列问题:该校被抽取的男生跳绳成绩频数分布直方图(1)本次调查中,男生的跳绳成绩的中位数在_等级;(2)若该校九年级共有男生400人,估计该校九年级男生跳绳成绩是等级的人数20(6分)先化简,再求值:(1),其中x是不等式组的整数解21(6分)已知,斜边,将绕点顺时针旋转,如图1,连接(1)填
6、空:;(2)如图1,连接,作,垂足为,求的长度;(3)如图2,点,同时从点出发,在边上运动,沿路径匀速运动,沿路径匀速运动,当两点相遇时运动停止,已知点的运动速度为1.5单位秒,点的运动速度为1单位秒,设运动时间为秒,的面积为,求当为何值时取得最大值?最大值为多少?22(8分)如图抛物线y=ax2+bx,过点A(4,0)和点B(6,2),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点(1)求抛物线的解析式,并直接写出点D的坐标;(2)当AMN的周长最小时,求t的值;(3)如图,过点M作MEx轴,交抛物线y=ax2+bx于点E
7、,连接EM,AE,当AME与DOC相似时请直接写出所有符合条件的点M坐标23(8分)如图,在矩形ABCD中,AB2,AD=,P是BC边上的一点,且BP=2CP(1)用尺规在图中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图,在(1)的条体下,判断EB是否平分AEC,并说明理由;(3)如图,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,PFB能否由都经过P点的两次变换与PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)24(10分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克
8、60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?25(10分)先化简,再求值:a(a3b)+(a+b)2a(ab),其中a=1,b=26(12分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表: 组别身高Ax160B160 x165C165x170D170 x175Ex175根据图表提供的信息
9、,回答下列问题:(1)样本中,男生的身高众数在 组,中位数在 组;(2)样本中,女生身高在E组的有 人,E组所在扇形的圆心角度数为 ;(3)已知该校共有男生600人,女生480人,请估让身高在165x175之间的学生约有多少人?27(12分)在ABCD,过点D作DEAB于点E,点F在边CD上,DFBE,连接AF,BF.求证:四边形BFDE是矩形;若CF3,BF4,DF5,求证:AF平分DAB参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】试题分析:由图可知,把7个数据从小到大排列为22,22,23,1,28,30,3
10、1,中位数是第4位数,第4位是1,所以中位数是1平均数是(222+23+1+28+30+31)7=1,所以平均数是1故选B考点:中位数;加权平均数2、C【解析】根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的平均数和中位数【详解】对于数据:6,3,4,7,6,0,1,这组数据按照从小到大排列是:0,3,4,6,6,7,1,这组数据的平均数是: 中位数是6,故选C.【点睛】本题考查了平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列, 正中间如果是一个数,这个数就是中位数,
11、如果正中间是两个数,那中位数是这两个数的平均数.3、C【解析】根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可【详解】由题意得,x+30,x0,解得x3且x0,故选C.【点睛】本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键.4、A【解析】原式=(x1)2+=+=1,故选A5、D【解析】当k+1=0时,函数为一次函数必与x轴有一个交点;当k+10时,函数为二次函数,根据条件可知其判别式为0,可求得k的值【详解】当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;当k-10,即k1时,由函数与x轴只有一个交点可知,=(-4)2-4(k-1)4
12、=0,解得k=2,综上可知k的值为1或2,故选D【点睛】本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况6、A【解析】根据二次根式的性质对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断【详解】A、原式=2,所以A选项正确;B、原式=4-3=,所以B选项错误;C、原式=3,所以C选项错误;D、原式=,所以D选项错误故选A【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能
13、结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍7、D【解析】解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1则剪去的直角三角形的斜边长为1cm故选D【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算8、C【解析】试题分析:如图所示:NOQ=138,选项A错误;NOP=48,选项B错误;如图可得PON=48,MOQ=42,所以PON比MOQ大
14、,选项C正确;由以上可得,MOQ与MOP不互补,选项D错误故答案选C考点:角的度量.9、D【解析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解【详解】正数大于0和一切负数,只需比较-和-1的大小,|-|-1|,最小的数是-1故选D【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小10、B【解析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=. 故选B【点睛】
15、本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力11、A【解析】根据两数相乘,同号得正,异号得负,再把绝对值相乘计算即可.【详解】-12=-故选A.【点睛】本题考查了有理数的乘法计算,解答本题的关键是熟练掌握有理数的乘法法则.12、C【解析】如图所示,连接CM,M是AB的中点,SACM=SBCM=SABC,开始时,SMPQ=SACM=SABC;由于P,Q两点同时出发,并同时到达终点,从而点P到达AC的中点时,点Q也到达BC的中点,此时,SMPQ=SABC;结束时,SMPQ=SBCM=SABCMPQ的面积大小变化情况
16、是:先减小后增大故选C二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】先提公因式,再套用平方差公式.【详解】ax2a=a(x2-1)=故答案为:【点睛】掌握因式分解的一般方法:提公因式法,公式法.14、0.5m3【解析】根据第三象限内点的横坐标与纵坐标都是负数列式不等式组,然后求解即可【详解】点P(m3,12m)在第三象限,解得:0.5m3.故答案为:0.5m3.【点睛】本题考查了解一元二次方程组与象限及点的坐标的有关性质,解题的关键是熟练的掌握解一元二次方程组与象限及点的坐标的有关性质.15、1【解析】设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则APB=
17、90,ABP=65,因而PAB=9065=25,在大量角器中弧PB所对的圆心角是1,因而P在大量角器上对应的度数为1故答案为116、1【解析】根据等腰三角形的性质以及三角形内角和定理在ABC中可求得ACB=ABC=74,根据等腰三角形的性质以及三角形外角的性质在BCD中可求得CDB=CBD=ACB=1【详解】AB=AC,A=32,ABC=ACB=74,又BC=DC,CDB=CBD=ACB=1,故答案为1【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用17、【解析】试题解析: 所以 故答案为18、1【解析】先根据分式混合运算顺序和运算
18、法则化简原式,再将a的值代入计算可得【详解】原式,当a3时,原式1,故答案为:1【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)C;(2)100【解析】(1)根据中位数的定义即可作出判断;(2)先算出样本中C等级的百分比,再用总数乘以400即可.【详解】解:(1)由直方图中可知数据总数为40个,第20,21个数据的平均数为本组数据的中位数,第20,21个数据的等级都是C等级,故本次调查中,男生的跳绳成绩的中位数在C等级;故答案为C.(2)400 =100(人)答:估计
19、该校九年级男生跳绳成绩是等级的人数有100人.【点睛】本题考查了中位数的求法和用样本数估计总体数据,理解相关知识是解题的关键.20、x=3时,原式=【解析】原式括号中两项通分并利用同分母分式的减法法则计算,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,求出不等式组的解集,找出解集中的整数计算得出到x的值,代入计算即可求出值.【详解】解:原式=,解不等式组得,2x,x取整数,x=3,当x=3时,原式=【点睛】本题主要考查分式额化简求值及一元一次不等式组的整数解21、(1)1;(2);(3)x时,y有最大值,最大值【解析】(1)只要证明OBC是等边三角形即可;(2)
20、求出AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:当0 x时,M在OC上运动,N在OB上运动,此时过点N作NEOC且交OC于点E当x4时,M在BC上运动,N在OB上运动当4x4.8时,M、N都在BC上运动,作OGBC于G【详解】(1)由旋转性质可知:OBOC,BOC1,OBC是等边三角形,OBC1故答案为1(2)如图1中OB4,ABO30,OAOB2,ABOA2,SAOCOAAB22BOC是等边三角形,OBC1,ABCABO+OBC90,AC,OP(3)当0 x时,M在OC上运动,N在OB上运动,此时过点N作NEOC且交OC于点E则NEONsin1x,SOM
21、NOMNE1.5xx,yx2,x时,y有最大值,最大值当x4时,M在BC上运动,N在OB上运动作MHOB于H则BM81.5x,MHBMsin1(81.5x),yONMHx2+2x当x时,y取最大值,y,当4x4.8时,M、N都在BC上运动,作OGBC于GMN122.5x,OGAB2,yMNOG12x,当x4时,y有最大值,最大值2综上所述:y有最大值,最大值为【点睛】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题22、(1)y=x2x,点D的坐标为(2,);(2)t=2;(3)M点的坐标为(2,0)或(6,
22、0)【解析】(1)利用待定系数法求抛物线解析式;利用配方法把一般式化为顶点式得到点D的坐标;(2)连接AC,如图,先计算出AB=4,则判断平行四边形OCBA为菱形,再证明AOC和ACB都是等边三角形,接着证明OCMACN得到CM=CN,OCM=ACN,则判断CMN为等边三角形得到MN=CM,于是AMN的周长=OA+CM,由于CMOA时,CM的值最小,AMN的周长最小,从而得到t的值;(3)先利用勾股定理的逆定理证明OCD为直角三角形,COD=90,设M(t,0),则E(t,t2-t),根据相似三角形的判定方法,当时,AMECOD,即|t-4|:4=|t2-t |:,当时,AMEDOC,即|t-
23、4|:=|t2-t |:4,然后分别解绝对值方程可得到对应的M点的坐标【详解】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,抛物线解析式为y=x2-x;y=x2-x =-2) 2-;点D的坐标为(2,-);(2)连接AC,如图,AB=4,而OA=4,平行四边形OCBA为菱形,OC=BC=4,C(2,2),AC=4,OC=OA=AC=AB=BC,AOC和ACB都是等边三角形,AOC=COB=OCA=60,而OC=AC,OM=AN,OCMACN,CM=CN,OCM=ACN,OCM+ACM=60,ACN+ACM=60,CMN为等边三角形,MN=CM,AMN的周长=AM+AN+M
24、N=OM+AM+MN=OA+CM=4+CM,当CMOA时,CM的值最小,AMN的周长最小,此时OM=2,t=2;(3)C(2,2),D(2,-),CD=,OD=,OC=4,OD2+OC2=CD2,OCD为直角三角形,COD=90,设M(t,0),则E(t,t2-t),AME=COD,当时,AMECOD,即|t-4|:4=|t2-t |:,整理得|t2-t|=|t-4|,解方程t2-t =(t-4)得t1=4(舍去),t2=2,此时M点坐标为(2,0);解方程t2-t =-(t-4)得t1=4(舍去),t2=-2(舍去);当时,AMEDOC,即|t-4|:=|t2-t |:4,整理得|t2-t
25、|=|t-4|,解方程t2-t =t-4得t1=4(舍去),t2=6,此时M点坐标为(6,0);解方程t2-t =-(t-4)得t1=4(舍去),t2=-6(舍去);综上所述,M点的坐标为(2,0)或(6,0)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、平行四边形的性质和菱形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;熟练掌握相似三角形的判定方法;会运用分类讨论的思想解决数学问题23、(1)作图见解析;(2)EB是平分AEC,理由见解析; (3)PFB能由都经过P点的两次变换与PAE组成一个等腰三角形,变换的方法为:将BPF绕点B
26、顺时针旋转120和EPA重合,沿PF折叠,沿AE折叠【解析】【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;(2)先求出DE=CE=1,进而判断出ADEBCE,得出AED=BEC,再用锐角三角函数求出AED,即可得出结论;(3)先判断出AEPFBP,即可得出结论【详解】(1)依题意作出图形如图所示;(2)EB是平分AEC,理由:四边形ABCD是矩形,C=D=90,CD=AB=2,BC=AD=,点E是CD的中点,DE=CE=CD=1,在ADE和BCE中,ADEBCE,AED=BEC,在RtADE中,AD=,DE=1,tanAED=,AED=60,BCE=AED=60,AEB=180A
27、EDBEC=60=BEC,BE平分AEC;(3)BP=2CP,BC=,CP=,BP=,在RtCEP中,tanCEP=,CEP=30,BEP=30,AEP=90,CDAB,F=CEP=30,在RtABP中,tanBAP=,PAB=30,EAP=30=F=PAB,CBAF,AP=FP,AEPFBP,PFB能由都经过P点的两次变换与PAE组成一个等腰三角形,变换的方法为:将BPF绕点B顺时针旋转120和EPA重合,沿PF折叠,沿AE折叠【点睛】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出AEPFBP是解本题的关键24、(1)4元或6元;(2)九折.【解析】解:(1)设每千克核桃应降价x元.根据题意,得(60 x40)(100+20)=2240,化简,得 x210 x+24=0,解得x1=4,x2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元. 要尽可能让利于顾客,每千克核桃应降价6元.此时,售价为:606=54(元),.答:该店应按原售价的九折出售.25、 【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烟台理工学院《计算机网络》2023-2024学年第一学期期末试卷
- 五年级数学(小数乘法)计算题专项练习及答案
- 许昌学院《空间设计与风水》2022-2023学年第一学期期末试卷
- 许昌学院《二维设计基础》2021-2022学年第一学期期末试卷
- 幼儿园健康饮食教育的有效建议计划
- 实现企业数字化管理的计划
- 反思与总结在工作计划中的地位
- 财务合规检查方案计划
- 地板安装工劳动合同三篇
- 西南医科大学《大学物理》2021-2022学年第一学期期末试卷
- BCG矩阵图文详解
- 飞秒激光加工技术ppt课件(PPT 31页)
- 2020-2021学年广东省广州市天河区五年级上学期期末考试数学模拟试卷及答案解析
- 【双减资料】-双减背景下高效课堂教学实践研究课题总结结题报告
- 李震-数据中心节能关键技术研究PPT通用课件
- 中药饮片入库验收操作规程
- 结构力学——静定梁
- 正体五行择法
- 山东省济南市高新区2021-2022学年上学期八年级期末生物试卷(附答案)
- 很牛的ppt(获奖作品)
- 幼儿园中班健康领域活动《保护牙齿》.ppt
评论
0/150
提交评论