山东省济南长清区六校联考2022年中考五模数学试题含解析_第1页
山东省济南长清区六校联考2022年中考五模数学试题含解析_第2页
山东省济南长清区六校联考2022年中考五模数学试题含解析_第3页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图所示,结论:;,其中正确的是有( )A1个B2个C3个D4个2如图,矩形纸片中,将沿折叠,使点落在点处,交于点,则的长等于( )ABCD3计算的结果是( )A1B-1

2、CD4设x1,x2是一元二次方程x22x50的两根,则x12+x22的值为()A6B8C14D165下列图形中既是中心对称图形又是轴对称图形的是ABCD6下列计算结果等于0的是( )ABCD7如图是某公园的一角,AOB=90,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CDOB,则图中休闲区(阴影部分)的面积是()A米2B米2C米2D米281.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()ABCD9如图,在正方形OABC中,点A的坐标是(3,1),点B的纵坐标是4,则B,C两点的坐标分别是()A(2,4),(1,3)B(2,4),(2,3)C(3,4),(1,4

3、)D(3,4),(1,3)10有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( )A4.8,6,6B5,5,5C4.8,6,5D5,6,611某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A18分,17分 B20分,17分 C20分,19分 D20分,20分12在中,下列结论中,正确的是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13若 m、n 是方程 x2+2018x1=0 的两个根,则 m2n+mn2mn=_14若mn=4,则2m24mn+2n2的值为_15如图

4、,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15方向上,此时轮船与小岛C的距离为_海里.(结果保留根号)16如图,ABCD中,对角线AC,BD相交于点O,且ACBD,请你添加一个适当的条件_,使ABCD成为正方形 17如图,AC是正五边形ABCDE的一条对角线,则ACB_18分解因式:2x28xy+8y2= 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,AB是O的直径,弦CDAB,垂足为H,连结AC,过上一点E作EGAC交CD的延长线于点G,连结AE交CD于点F,且

5、EG=FG,连结CE(1)求证:G=CEF;(2)求证:EG是O的切线;(3)延长AB交GE的延长线于点M,若tanG =,AH=3,求EM的值20(6分)如图,已知AB是O的直径,点C、D在O上,点E在O外,EAC=D=60求ABC的度数;求证:AE是O的切线;当BC=4时,求劣弧AC的长21(6分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元该网店甲、乙两种羽毛球每筒的售价各是多少元?根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共5

6、0筒,那么最多可以购进多少筒甲种羽毛球?22(8分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)将上面的条形统计图补充完整;(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?23(8分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要

7、3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.24(10分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使CAD=30,CBD=60求AB的长(精确到0.1米,参考数据:);已知本路段对校车限速为40千米小时,若测得某辆校车从A到B

8、用时2秒,这辆校车是否超速?说明理由25(10分)如图,在正方形ABCD中,AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求EAF的度数如图,在RtABD中,BAD=90,AB=AD,点M,N是BD边上的任意两点,且MAN=45,将ABM绕点A逆时针旋转90至ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由在图中,若EG=4,GF=6,求正方形ABCD的边长26(12分)已知:如图,MNQ中,MQNQ(1)请你以MN为一边,在MN的同侧构造一个与MNQ全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题

9、:如图,在四边形ABCD中,B=D求证:CD=AB27(12分)已知抛物线,与轴交于两点,与轴交于点,且抛物线的对称轴为直线(1)抛物线的表达式;(2)若抛物线与抛物线关于直线对称,抛物线与轴交于点两点(点在点左侧),要使,求所有满足条件的抛物线的表达式参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据已知的条件,可由AAS判定AEBAFC,进而可根据全等三角形得出的结论来判断各选项是否正确【详解】解:如图:在AEB和AFC中,有,AEBAFC;(AAS)FAM=EAN,EAN-MAN=FAM-MAN,即EAM=F

10、AN;(故正确)又E=F=90,AE=AF,EAMFAN;(ASA)EM=FN;(故正确)由AEBAFC知:B=C,AC=AB;又CAB=BAC,ACNABM;(故正确)由于条件不足,无法证得CD=DN;故正确的结论有:;故选C【点睛】此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难2、B【解析】由折叠的性质得到AE=AB,E=B=90,易证RtAEFRtCDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6-x,在RtCDF中利用勾股定理得到关于x的方程x2=42+(6-x)2,解方程求出x即可【详解】矩形ABCD沿对角线AC对折,使

11、ABC落在ACE的位置,AE=AB,E=B=90,又四边形ABCD为矩形,AB=CD,AE=DC,而AFE=DFC,在AEF与CDF中, ,AEFCDF(AAS),EF=DF;四边形ABCD为矩形,AD=BC=6,CD=AB=4,RtAEFRtCDF,FC=FA,设FA=x,则FC=x,FD=6-x,在RtCDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x,则FD6-x=.故选B【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等也考查了矩形的性质和三角形全等的判定与性质以及勾股定理3、C【解析】原式通分并利用同分母分式的减法法则计算,即可得到结果【详解】解

12、:=,故选:C.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键4、C【解析】根据根与系数的关系得到x1+x2=2,x1x2=-5,再变形x12+x22得到(x1+x2)2-2x1x2,然后利用代入计算即可【详解】一元二次方程x2-2x-5=0的两根是x1、x2,x1+x2=2,x1x2=-5,x12+x22=(x1+x2)2-2x1x2=22-2(-5)=1故选C【点睛】考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=- ,x1x2= 5、B【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合

13、;中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意故选B6、A【解析】各项计算得到结果,即可作出判断【详解】解:A、原式=0,符合题意;B、原式=-1+(-1)=-2,不符合题意;C、原式=-1,不符合题意;D、原式=-1,不符合题意,故选:A【点睛】本题考查了有理数的运算,熟练掌握运算法则是解本题的关键7、C【解析】连接OD,弧AB的半径OA长是6米,C是OA的中点,OC=OA=6=1AOB=

14、90,CDOB,CDOA在RtOCD中,OD=6,OC=1,又,DOC=60(米2)故选C8、D【解析】根据轴对称图形的概念求解如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意故选D.【点睛】本题主要考查轴对称图形的知识点确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合9、A【解析】作CDx轴于D,作AEx轴于E,作BFAE于F,由AAS证明AOEOCD,得出AE=OD,OE=CD,由点A的坐标是(3

15、,1),得出OE=3,AE=1,OD=1,CD=3,得出C(1,3),同理:AOEBAF,得出AE=BF=1,OEBF=31=2,得出B(2,4)即可【详解】解:如图所示:作CDx轴于D,作AEx轴于E,作BFAE于F,则AEO=ODC=BFA=90,OAE+AOE=90四边形OABC是正方形,OA=CO=BA,AOC=90,AOE+COD=90,OAE=COD在AOE和OCD中,AOEOCD(AAS),AE=OD,OE=CD点A的坐标是(3,1),OE=3,AE=1,OD=1,CD=3,C(1,3)同理:AOEBAF,AE=BF=1,OEBF=31=2,B(2,4)故选A【点睛】本题考查了正

16、方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键10、C【解析】解:在这一组数据中6是出现次数最多的,故众数是6;而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,平均数是:(3+4+5+6+6)5=4.8,故选C【点睛】本题考查众数;算术平均数;中位数11、D【解析】分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数详解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据

17、的众数为20分、中位数为20分,故选:D点睛:本题考查了确定一组数据的中位数和众数的能力一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数12、C【解析】直接利用锐角三角函数关系分别计算得出答案【详解】,故选项A,B错误,故选项C正确;选项D错误故选C【点睛】此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】根据根与系数的关系得到 m+n=2018,

18、mn=1,把 m2n+mm2mn分解因式得到 mn(m+n1),然后利用整体代入的方法计算【详解】解:m、n 是方程 x2+2018x1=0 的两个根,m+n=-2018,=1(20181)=1(1)=1,故答案为:1【点睛】本题考查了根与系数的关系,如果一元二次方程 ax2+bx+c=0 的两根分别为x1与x2,则14、1【解析】解:2m24mn+2n2=2(mn)2,当mn=4时,原式=242=1故答案为:115、5 【解析】如图,作BHAC于H在RtABH中,求出BH,再在RtBCH中,利用等腰直角三角形的性质求出BC即可【详解】如图,作BHAC于H在RtABH中,AB=10海里,BAH

19、=30,ABH=60,BH=AB=5(海里),在RtBCH中,CBH=C=45,BH=5(海里),BH=CH=5海里,CB=5(海里)故答案为:5【点睛】本题考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题16、BAD=90 (不唯一)【解析】根据正方形的判定定理添加条件即可.【详解】解:平行四边形 ABCD的对角线AC与BD相交于点O,且ACBD,四边形ABCD是菱形,当BAD=90时,四边形ABCD为正方形.故答案为:BAD=90.【点睛】本题考查了正方形的判定:先判定平行四边形是菱形,判定这个菱形有一个角为直角.17、36【解析】由正五边形的性

20、质得出B=108,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果【详解】五边形ABCDE是正五边形,B=108,AB=CB,ACB=(180108)2=36;故答案为3618、1(x1y)1【解析】试题分析:1x18xy+8y1=1(x14xy+4y1)=1(x1y)1故答案为:1(x1y)1考点:提公因式法与公式法的综合运用三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;(2)证明见解析;(3). 【解析】试题分析:(1)由ACEG,推出G=ACG,由ABCD推出,推出CEF=ACD,推出G=CEF,由此即可证明;(2)欲

21、证明EG是O的切线只要证明EGOE即可;(3)连接OC设O的半径为r在RtOCH中,利用勾股定理求出r,证明AHCMEO,可得,由此即可解决问题;试题解析:(1)证明:如图1ACEG,G=ACG,ABCD,CEF=ACD,G=CEF,ECF=ECG,ECFGCE(2)证明:如图2中,连接OEGF=GE,GFE=GEF=AFH,OA=OE,OAE=OEA,AFH+FAH=90,GEF+AEO=90,GEO=90,GEOE,EG是O的切线(3)解:如图3中,连接OC设O的半径为r在RtAHC中,tanACH=tanG=,AH=,HC=,在RtHOC中,OC=r,OH=r,HC=,r=,GMAC,C

22、AH=M,OEM=AHC,AHCMEO,EM=点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题20、(1)60;(2)证明略;(3)【解析】(1)根据ABC与D都是劣弧AC所对的圆周角,利用圆周角定理可证出ABC=D=60;(2)根据AB是O的直径,利用直径所对的圆周角是直角得到ACB=90,结合ABC=60求得BAC=30,从而推出BAE=90,即OAAE,可得AE是O的切线;(3)连结OC,证出OBC是等边三角形,算出BOC=60且O的半径

23、等于4,可得劣弧AC所对的圆心角AOC=120,再由弧长公式加以计算,可得劣弧AC的长【详解】(1)ABC与D都是弧AC所对的圆周角,ABC=D=60; (2)AB是O的直径,ACB=90BAC=30,BAE=BAC+EAC=30+60=90,即BAAE,AE是O的切线;(3)如图,连接OC,OB=OC,ABC=60,OBC是等边三角形,OB=BC=4,BOC=60,AOC=120,劣弧AC的长为=【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.21、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)最多可以购进1筒甲种羽毛球【解析】(1)设

24、该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据“甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,购买了2筒甲种羽毛球和3筒乙种羽毛球共花费255元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50m)筒,根据总价单价数量结合总费用不超过2550元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论【详解】(1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,依题意,得:,解得:答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(

25、50m)筒,依题意,得:60m+45(50m)2550,解得:m1答:最多可以购进1筒甲种羽毛球【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式22、(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144;(3)估计选择以“友善”为主题的七年级学生有360名.【解析】(1)根据诚信的人数和所占的百分比求出抽取的总人数,用总人数乘以友善所占的百分比,即可补全统计图;(2)用360乘以爱国所占的百分比,即可求出圆心角的度数;(3)用该校七年级的总人数乘

26、以“友善”所占的百分比,即可得出答案【详解】解:(1)本次调查共抽取的学生有(名)选择“友善”的人数有(名)条形统计图如图所示:(2)选择“爱国”主题所对应的百分比为,选择“爱国”主题所对应的圆心角是;(3)该校七年级共有1200名学生,估计选择以“友善”为主题的七年级学生有名.故答案为:(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144;(3)估计选择以“友善”为主题的七年级学生有360名.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题23、(1)每台电脑0.5万

27、元,每台电子白板1.5万元(2)见解析【解析】解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,解得:。答:每台电脑0.5万元,每台电子白板1.5万元。(2)设需购进电脑a台,则购进电子白板(30a)台,则,解得:,即a=15,16,17。故共有三种方案:方案一:购进电脑15台,电子白板15台.总费用为万元;方案二:购进电脑16台,电子白板14台.总费用为万元;方案三:购进电脑17台,电子白板13台总费用为万元。方案三费用最低。(1)设电脑、电子白板的价格分别为x,y元,根据等量关系:“1台电脑+2台电子白板=3.5万元”,“2台电脑+1台电子白板=2.5万元”,列方程组求解即可。

28、(2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解。设购进电脑x台,电子白板有(30 x)台,然后根据题目中的不等关系“总费用不超过30万元,但不低于28万元”列不等式组解答。24、(1)24.2米(2) 超速,理由见解析【解析】(1)分别在RtADC与RtBDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速【详解】解:(1)由題意得,在RtADC中,在RtBDC中,AB=ADBD=(米)(2)汽车从A到B用时2秒,速度为24.22=12.1(米/秒),12.1米/秒=

29、43.56千米/小时,该车速度为43.56千米/小时43.56千米/小时大于40千米/小时,此校车在AB路段超速25、 (1) 45(1) MN1=ND1+DH1理由见解析;(3)11.【解析】(1)先根据AGEF得出ABE和AGE是直角三角形,再根据HL定理得出ABEAGE,故可得出BAE=GAE,同理可得出GAF=DAF,由此可得出结论;(1)由旋转的性质得出BAM=DAH,再根据SAS定理得出AMNAHN,故可得出MN=HN再由BAD=90,AB=AD可知ABD=ADB=45,根据勾股定理即可得出结论;(3)设正方形ABCD的边长为x,则CE=x-4,CF=x-2,再根据勾股定理即可得出x的值【详解】解:(1)在正方形ABCD中,B=D=90,AGEF,ABE和AGE是直角三角形在RtABE和RtAGE中,ABEAGE(HL),BAE=GAE同理,GAF=DAFEAF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论