

下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、广东省梅州市中学高二数学文下学期期末试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 关于直线以及平面,下列命题中正确的是( )A. 若,则B. 若,则 C. 若,则D. 若,则参考答案:D2. 如图是函数 的导函数的图象,对下列四个判断: 在(2,1)上是增函数是极小值点在(1,2)上是增函数,在(2,4)上是减函数是的极小值点其中正确的是 ( )A、 B、 C、 D、 参考答案:C3. 用“斜二测”画法画出ABC(A为坐标原点,AB在x轴上)的直观图为ABC,则ABC的面积与ABC的面积的比为()ABCD参考答案:C4.
2、 如图214所示的程序框图输出的结果是()图214A6 B6 C5 D5参考答案:C5. 已知F1,F2是椭圆和双曲线的公共焦点,M是它们的一个公共点,且F1MF2=,则椭圆和双曲线的离心率的倒数之和的最大值为()A2BCD4参考答案:C【考点】双曲线的简单性质;椭圆的简单性质【专题】计算题;圆锥曲线的定义、性质与方程【分析】根据双曲线和椭圆的性质和关系,结合余弦定理和柯西不等式即可得到结论【解答】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(aa1),半焦距为c,由椭圆和双曲线的定义可知,设|MF1|=r1,|MF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2F1MF
3、2=,由余弦定理可得4c2=(r1)2+(r2)22r1r2cos,在椭圆中,化简为即4c2=4a23r1r2,即=1,在双曲线中,化简为即4c2=4a12+r1r2,即=1,联立得, +=4,由柯西不等式得(1+)(+)(1+)2,即(+)24=,即+,当且仅当e1=,e2=时取等号即取得最大值且为故选C【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键难度较大6. 已知集合M=x|2, xR,P=x|1, xZ,则MP等于( )A.x|0 x3, xZ B.x|0 x3, xZC.x|-1x0, xZ D.x|-1x0, xZ参考答案:B略7. 已知等边
4、三角形的一个顶点位于抛物线的焦点,另两个顶点在抛物线上,则这样的等边三角形的个数是(A)4 (B)3 (C)2 (D)1参考答案:C8. 给出下列命题:若“或”是假命题,则“且”是真命题; ;若实系数关于的二次不等式,的解集为,则必有且;.其中真命题的个数是 ()A1 B2 C3 D4参考答案:B9. 已知函数在区间(,1)上有最小值,则函数在区间 (1,+)上一定( )A 有最小值B. 有最大值C. 是减函数D. 是增函数参考答案:D【分析】由二次函数在区间上有最小值得知其对称轴,再由基本初等函数的单调性或单调性的性质可得出函数在区间上的单调性.【详解】由于二次函数在区间上有最小值,可知其对
5、称轴,.当时,由于函数和函数在上都为增函数,此时,函数在上为增函数;当时,在上为增函数;当时,由双勾函数的单调性知,函数在上单调递增,所以,函数在上为增函数.综上所述:函数在区间上为增函数,故选D.【点睛】本题考查二次函数的最值,同时也考查了型函数单调性的分析,解题时要注意对的符号进行分类讨论,考查分类讨论数学思想,属于中等题.10. 将两个数交换,使,下面语句正确一组是( ) A B C D a=bb=ac=bb=aa=cb=aa=ba=cc=bb=a参考答案:B略二、 填空题:本大题共7小题,每小题4分,共28分11. 命题“”为假命题,则实数的取值范围为 .参考答案:12. 已知,若,则
6、的值是 ;参考答案:13. 已知高为H的正三棱锥P-ABC的每个顶点都在半径为R的球O的球面上,若二面角P-AB-C的正切值为4,则_.参考答案:【分析】取线段AB的中点D,点P在平面ABC的射影点M,利用二面角的定义得出为二面角的平面角,于此得出,并在中,由勾股定理,经过计算可得出与的比值。【详解】取线段AB的中点D,设P在底面ABC的射影为M,则,连接CD,PD(图略).设,易证,则为二面角的平面角,从而,则,.在中,即,解得,故.故答案为:。【点睛】本题考查二面角的定义,考查多面体的外接球,在处理多面体的外接球时,要确定球心的位置,同时在求解时可引入一些参数去表示相关边长,可简化计算,考
7、查逻辑推理能力,属于中等题。14. 执行右面的流程图,输出的S= .参考答案:210由右面的流程图可知:此问题相当于以下问题:已知:,求则 故答案为21015. 观察下列等式:由此猜测第个等式为 .参考答案: 16. 16在平面直角坐标系xoy中,点,若在曲线上存在点P使得,则实数a的取值范围为 参考答案: 17. 矩形ABCD与ABEF所在平面相互垂直,现将绕着直线AC旋转一周,则在旋转过程中,直线AD与BE所成角的取值范围是 参考答案: 在初始位置,直线与所成角为;根据图形的对称性当平面与平面垂直时,与所成的角为最小,此时角为,故角的取值范围是.三、 解答题:本大题共5小题,共72分。解答
8、应写出文字说明,证明过程或演算步骤18. 各项均为正数的数列an中,a1=1,Sn是数列an的前n项和,对任意(1)求数列an的通项公式;(2)记,求数列bn的前n项和Tn参考答案:【考点】数列的求和;数列递推式【分析】(1)由已知条件推导出(an+an1)(anan13)=0,从而得到数列an是首项为1,公差为3的等差数列,由此能求出数列an的通项公式(2)由Sn=,bn=n?2n,由此利用错位相减法能求出数列bn的前n项和Tn【解答】解:(1)由6Sn=an2+3an+2得6Sn1=an12+3an1+2得(an+an1)(anan13)=0,各项均为正数的数列ananan1=3,数列an
9、是首项为1,公差为3的等差数列,数列an的通项公式是an=3n2(2)Sn=,=n?2n,Tn=121+222+n?2n,2Tn=122+223+n2n+1,得Tn=21+22+23+2nn2n+1=n2n+1=(1n)2n+12,Tn=(n1)2n+1+219. 已知,(其中).(1)求及;(2)试比较与的大小,并用数学归纳法给出证明过程.参考答案:解:(1)取x=1,则a0=2n;2分取x=2,则a0+a1+a2+a3+an=3n,Sn=a1+a2+a3+an=3n-2n;4分(2)要比较Sn与(n-2)2n+2n2的大小,即比较:3n与(n-1)2n+2n2的大小,当n=1时,3n(n-
10、1)2n+2n2;当n=2,3时,3n(n-1)2n+2n2;当n=4,5时,3n(n-1)2n+2n2 猜想:当n4时,3n(n-1)2n+2n2,6分下面用数学归纳法证明:由上述过程可知,n=4时结论成立,7分假设当n=k,(k4)时结论成立,即3k(k-1)2k+2k2,两边同乘以3得:3k+13 (k-1)2k+2k2=k2k+1+2(k+1)2+(k-3)2k+4k2-4k-2而(k-3)2k+4k2-4k-2=(k-3)2k+4(k2-k-2)+6=(k-3)2k+4(k-2)(k+1)+603k+1(k+1)-1)2k+1+2(k+1)2即n=k+1时结论也成立,11分当n4时,
11、3n(n-1)2n+2n2成立12分略20. (本题满分12分)已知双曲线()求曲线C的焦点;()求与曲线C有共同渐近线且过点(2,)的双曲线方程;参考答案:(),得,焦点;()双曲线与有共同双曲线,可设为,又过点,得,故双曲线方程为,即21. 已知y=f(x)(xR)是偶函数,当x0时,f(x)=x22x(1)求f(x)的解析式;(2)若不等式f(x)mx在1x2时都成立,求m的取值范围参考答案:【考点】二次函数的性质【分析】(1)当x0时,有x0,由f(x)为偶函数,求得此时f(x)=f(x)的解析式,从而得到函数f(x)在R上的解析式(2)由题意得mx2在1x2时都成立,而在1x2时,求
12、得(x2)min=1,由此可得m的取值范围【解答】解:(1)当x0时,有x0,f(x)为偶函数,f(x)=f(x)=(x)22(x)=x2+2x,f(x)=(2)由题意得x22xmx在1x2时都成立,即x2m在1x2时都成立,即mx2在1x2时都成立而在1x2时,(x2)min=1,m1【点评】本题主要考查利用函数的奇偶性求函数的解析式,函数的恒成立问题,体现了转化的数学思想,属于基础题22. 已知椭圆C: =1(m0)(1)若m=2,求椭圆C的离心率及短轴长;(2)如存在过点P(1,0)的直线与椭圆C交于A,B两点,且OAOB,求m的取值范围参考答案:【考点】KL:直线与椭圆的位置关系【分析】(1)当m=2时,椭圆C: =1,由此能求出椭圆C的离心率及短轴长(2)当直线的斜率存在时,由题意可设直线的方程为y=k(x+1),由,得(m+4k2)x2+8k2x+4k24m=0由此利用根的判别式、韦达定理、向量垂直,能求出m的范围;当直线的斜率不存在时,因为以线段AB为直径的圆恰好通过坐标原点,得到,由此能求出m的取值范围【解答】解:(1)当m=2时,椭圆C: =1a2=4,b2=2,c2=42=2,a=2,b=c=,离心率e=,短轴长2b=2(2)当直线的斜率存在时,由题意可设直线的方程为y=k(x+1),A(x1,y1),B(x2,y2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 景德镇陶瓷大学《微积分一》2023-2024学年第二学期期末试卷
- 湖南第一师范学院《数学专题讲座》2023-2024学年第一学期期末试卷
- 湖北艺术职业学院《影视文学与评论》2023-2024学年第一学期期末试卷
- 郑州轻工业大学《乐理基础与视唱(一)》2023-2024学年第二学期期末试卷
- 湛江幼儿师范专科学校《单片机原理及应用》2023-2024学年第二学期期末试卷
- 委托房屋买卖合同书
- 房屋租赁合同附清单
- 买卖暂不过户二手房合同
- 垃圾清运清理合同
- 技术检测服务合同
- 1-3个月宝宝智护训练课件
- 浅析新时代教育评价改革机制及实践路径
- 机械制图综合练习题
- 世界社会主义五百年
- 2019年自考《世界市场行情》模拟试题及答案
- 伊利经销商设立、变更、撤销、评估管理及考核办法
- 《中华人民共和国军人地位和权益保障法》重点内容学习PPT课件(带内容)
- LB/T 018-2011旅游饭店节能减排指引
- GB/T 5162-2021金属粉末振实密度的测定
- GB/T 12755-2008建筑用压型钢板
- FZ/T 73020-2019针织休闲服装
评论
0/150
提交评论