2023学年山东省临沂太平中学数学九年级第一学期期末联考试题含解析_第1页
2023学年山东省临沂太平中学数学九年级第一学期期末联考试题含解析_第2页
2023学年山东省临沂太平中学数学九年级第一学期期末联考试题含解析_第3页
2023学年山东省临沂太平中学数学九年级第一学期期末联考试题含解析_第4页
2023学年山东省临沂太平中学数学九年级第一学期期末联考试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1已知在RtABC中,A90,AB3,BC5,则cosB的值是()ABCD2如图,随意向水平放置的大O内部区域抛一个小球,则小球落在小O内部(阴影)区域的概率为( )ABCD3下列事件:经过有交通信号灯的路口,遇到红灯;掷一枚均匀的正方体骰子,骰子落地后朝上的点数不是奇数便是偶数;长为5cm、5cm、11c

2、m的三条线段能围成一个三角形;买一张体育彩票中奖。其中随机事件有( )A1个B2个C3个D4个4如图所示,图中既是轴对称图形,又是中心对称图形的是( )ABCD5某树主干长出若干数目的枝干,每个枝干又长出同样数目小分支,主干、枝干和小分支总数共57根,则主干长出枝干的根数为 ( )A7B8C9D106如图,已知四边形是平行四边形,下列结论不正确的是( )A当时,它是矩形B当时,它是菱形C当时,它是菱形D当时,它是正方形7某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A9分B8分C7分D6分8下列方程式属于一元二次方程的是

3、( )ABCD9如图是拦水坝的横断面,斜面坡度为,则斜坡的长为( )A米B米C米D24米10如图,在中,将绕点旋转到的位置,使得,则的大小为( )ABCD二、填空题(每小题3分,共24分)11一个等腰三角形的两条边长分别是方程x27x+100的两根,则该等腰三角形的周长是_12点(4,3)关于原点对称的点的坐标是_13三角形两边的长分别是8和6,第三边的长是一元二次方程的一个实数根,则该三角形的面积是 14若是方程的一个根则的值是_15已知二次函数yx24x+3,当axa+5时,函数y的最小值为1,则a的取值范围是_16如图,PA,PB是O的切线,切点分别是点A和B,AC是O的直径 若P60,

4、PA6,则BC的长为_17一个容器盛满纯药液40L,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L,则每次倒出的液体是_L18如图,为等边三角形,点在外,连接、若,则_三、解答题(共66分)19(10分)九年级(1)班的小华和小红两名学生10次数学测试成绩如下表(表I)所示:小花708090807090801006080小红908010060908090606090现根据上表数据进行统计得到下表(表):姓名平均成绩中位数众数小华80小红8090(1)填空:根据表I的数据完成表中所缺的数据;(2)老师计算了小红的方差请你计算小华的方差并说明哪名学生的成绩较

5、为稳定20(6分)已知:如图,菱形中,点,分别在,边上,连接,.求证:.21(6分)如下图1,将三角板放在正方形上,使三角板的直角顶点与正方形的顶点重合,三角板的一边交于点另一边交的延长线于点(1)观察猜想:线段与线段的数量关系是 ;(2)探究证明:如图2,移动三角板,使顶点始终在正方形的对角线上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立请说明理由:(3)拓展延伸:如图3,将(2)中的“正方形”改为“矩形”,且使三角板的一边经过点,其他条件不变,若、,求的值22(8分)如图1,为等腰三角形,是底边的中点,腰与相切于点,底交于点,(1)求证:是的切线;(2)如图2,

6、连接,交于点,点是弧的中点,若,求的半径23(8分)如图,学校操场旁立着一杆路灯(线段OP)小明拿着一根长2m的竹竿去测量路灯的高度,他走到路灯旁的一个地点A竖起竹竿(线段AE),这时他量了一下竹竿的影长AC正好是1m,他沿着影子的方向走了4m到达点B,又竖起竹竿(线段BF),这时竹竿的影长BD正好是2m,请利用上述条件求出路灯的高度24(8分)如图,在中, , 在,上取一点,以为直径作,与相交于点,作线段的垂直平分线交于点,连接(1) 求证:是的切线;(2)若,的半径为求线段与线段的长25(10分)在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a

7、0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“衍生三角形”已知抛物线与其“衍生直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C(1)填空:该抛物线的“衍生直线”的解析式为 ,点A的坐标为 ,点B的坐标为 ;(2)如图,点M为线段CB上一动点,将ACM以AM所在直线为对称轴翻折,点C的对称点为N,若AMN为该抛物线的“衍生三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由26(10分)已知:在O中

8、,弦AC弦BD,垂足为H,连接BC,过点D作DEBC于点E,DE交AC于点F(1)如图1,求证:BD平分ADF;(2)如图2,连接OC,若ACBC,求证:OC平分ACB;(3)如图3,在(2)的条件下,连接AB,过点D作DNAC交O于点N,若AB3,DN1求sinADB的值参考答案一、选择题(每小题3分,共30分)1、A【解析】根据余弦函数的定义即可求解【详解】解:在ABC中,A=90,AB=3,BC=5,cosB= 故选A【点睛】本题主要考查了余弦函数的定义,在直角三角形中,余弦为邻边比斜边,解决本题的关键是要熟练掌握余弦的定义.2、B【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面

9、积的比【详解】解:如图所示的正三角形,CAB60,OAB30,OBA90,设OBa,则OA2a,则小球落在小O内部(阴影)区域的概率为故选:B【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键3、B【分析】由题意直接根据事件发生的可能性大小对各事件进行依次判断【详解】解:经过有交通信号灯的路口,遇到红灯,是随机事件;掷一枚均匀的正方体骰子,骰子落地后朝上的点数不是奇数便是偶数,是必然事件;长为5cm、5cm、11cm的三条线段能围成一个三角形,是不可能事件;买一张体育彩票中奖,是随机事件;故选:B【点睛】本题考查的是必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事

10、件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件4、C【解析】根据轴对称图形和中心对称图形的定义(轴对称图形是沿某条直线对折,对折的两部分能够完全重合的图形,中心对称图形是绕着某一点旋转后能与自身重合的图形)判断即可.【详解】解:A选项是中心对称图形但不是轴对称图形,A不符合题意;B选项是轴对称图形但不是中心对称图形,B不符合题意;C选项既是轴对称图形又是中心对称图形,C符合题意;D选项既不是轴对称图形又不是中心对称图形.故选:C.【点睛】本题考查了轴对称图形与中心对称图形,熟练掌握轴对称图形与中心对称图形的判断方法是解题的关键.

11、5、A【分析】分别设出枝干和小分支的数目,列出方程,解方程即可得出答案.【详解】设枝干有x根,则小分支有根根据题意可得:解得:x=7或x=-8(不合题意,舍去)故答案选择A.【点睛】本题考查的是一元二次方程的应用,解题关键是根据题目意思列出方程.6、D【解析】根据已知及各个四边形的判定对各个选项进行分析从而得到最后答案【详解】A. 正确,对角线相等的平行四边形是矩形;B. 正确,对角线垂直的平行四边形是菱形;C. 正确,有一组邻边相等的平行四边形叫做菱形;D. 不正确,有一个角是直角的平行四边形叫做矩形。故选D【点睛】此题考查平行四边形的性质,矩形的判定,正方形的判定,解题关键在于掌握判定法则

12、7、C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6777899,故中位数为 :7分,故答案为C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8、D【解析】根据一元二次方程的定义逐项进行判断即可.【详解】A、是一元三次方程,故不符合题意;B、是分式方程,故不符合题意;C、是

13、二元二次方程,故不符合题意;D、是一元二次方程,符合题意.故选:D.【点睛】本题考查一元二次方程的定义,熟练掌握定义是关键.9、B【解析】根据斜面坡度为1:2,堤高BC为6米,可得AC=12m,然后利用勾股定理求出AB的长度【详解】解:斜面坡度为1:2,BC=6m,AC=12m,则,故选B【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据坡角构造直角三角形,利用三角函数的知识求解10、B【分析】由平行线的性质可得CCACAB64,由折叠的性质可得ACAC,BABCAC,可得ACCCCA64,由三角形内角和定理可求解【详解】CCAB,CCACAB64,将ABC绕点A旋转到ABC的位置,A

14、CAC,BABCAC,ACCCCA64,CAC18026452,故选:B【点睛】本题考查旋转的性质,平行线的判定,等腰三角形的性质,灵活运用旋转的性质是本题的关键二、填空题(每小题3分,共24分)11、1【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【详解】解:x27x+100(x2)(x5)0,解得:x12,x25,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+21故答案为:1【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质.12、(4,3)【解析】平面直角坐标系中任意一点P(x,y),关于原点的对称点

15、是(x,y),即关于原点的对称点,横纵坐标都变成相反数【详解】点(4,3)关于原点对称的点的坐标是(4,3)故答案为(4,3)【点睛】本题考查了平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),即关于原点的对称点,横纵坐标都变成相反数,比较简单13、24或【解析】试题分析:由x2-16x+60=0,可解得x的值为6或10,然后分别从x=6时,是等腰三角形;与x=10时,是直角三角形去分析求解即可求得答案考点:一元二次方程的解法;等腰三角形的性质;直角三角形的性质勾股定理14、【解析】根据一元二次方程的解的定义,将x=2代入已知方程,列出关于q的新方程,通过解该方程即可求得q的

16、值.【详解】x=2是方程x-3x+q=0的一个根,x=2满足该方程,2-32+q=0,解得,q=2.故答案为2.【点睛】本题考查了方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.15、3a1【分析】求得对称轴,然后分三种情况讨论即可求得【详解】解:二次函数yx14x+3(x1)11,对称轴为直线x1,当a1a+5时,则在axa+5范围内,x1时有最小值1,当a1时,则在axa+5范围内,xa时有最小值1,a14a+31,解得a1,当a+51时,则在axa+5范围内,xa+5时有最小值1,(a+5)14(a+5)

17、+31,解得a3,a的取值范围是3a1,故答案为:3a1【点睛】本题考查了二次函数的最值,熟练掌握二次函数的性质是解题的关键16、【分析】连接AB,根据PA,PB是O的切线可得PA=PB,从而得出AB=6,然后利用P60得出CAB为30,最后根据直角三角形中30角的正切值进一步计算即可.【详解】如图,连接AB,PA,PB是O的切线,PA=PB,P60,ABP为等边三角形,AB=6,P60,CAB=30,易得ABC为直角三角形,,BC=AB=,故答案为:.【点睛】本题主要考查了圆中切线长与三角函数的综合运用,熟练掌握相关概念是解题关键.17、1【分析】设每次倒出液体xL,第一次倒出后还有纯药液(

18、40 x),药液的浓度为,再倒出xL后,倒出纯药液x,利用40 xx就是剩下的纯药液10L,进而可得方程【详解】解:设每次倒出液体xL,由题意得:40 xx=10,解得:x=60(舍去)或x=1答:每次倒出1升故答案为1【点睛】本题考查一元二次方程的应用18、1【分析】作ABD的角平分线交DC于E,连接AE,作于F ,延长BE交AD于R,先证明,可得,再通过等腰三角形的中线定理得,利用三角函数求出DF,FC的值,即可求出CD的值【详解】作ABD的角平分线交DC于E,连接AE,作于F ,延长BE交AD于R A,E,C,D四点共圆, ,, 故答案为:1【点睛】本题考查了三角形的综合问题,掌握角平分

19、线的性质、等腰三角形的性质、全等三角形的性质以及判定定理、锐角三角函数是解题的关键三、解答题(共66分)19、(1)见解析;(2)小华的方差是120,小华成绩稳定【分析】(1)由表格可知,小华10次数学测试中,得60分的1次,得70分的2次,得1分的4次,得90分的2次,得100分的1次,根据加权平均数的公式计算小华的平均成绩,将小红10次数学测试的成绩从小到大排列,可求出中位数,根据李华的10个数据里的各数出现的次数,可求出测试成绩的众数;(2)先根据方差公式分别求出两位同学10次数学测试成绩的方差,再比较大小,其中较小者成绩较为稳定【详解】(1)解:(1)小华的平均成绩为: (601+70

20、2+14+902+1001)=1,将小红10次数学测试的成绩从小到大排列为:60,60,60,1,1,90,90,90,90,100,第五个与第六个数据为1,90,所以中位数为 =85,小华的10个数据里1分出现了4次,次数最多,所以测试成绩的众数为1填表如下:姓名平均成绩中位数众数小华11小红85(2)小华同学成绩的方差:S2102+02+102+02+102+102+02+202+202+02=(100+100+100+100+400+400)=120,小红同学成绩的方差为 200,120200,小华同学的成绩较为稳定【点睛】本题考查平均数、中位数、众数、方差的意义一组数据中出现次数最多的

21、数据叫做众数将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定20、见解析【分析】根据菱形的性质和全等三角形的判定和性质解答即可【详解】证明:连接,如图,四边形是菱形,在和中, (SAS),【点睛】本题考查菱形的性质,关键是根据菱形的性质和全等三角形的判定和性质解答21、(1);(2)

22、成立,证明过程见解析;(3).【分析】(1)利用三角形全等的判定定理与性质即可得;(2)如图(见解析),过点分别作,垂足分别为,证明方法与题(1)相同;(3)如图(见解析),过点分别作,垂足分别为,先同(2)求出,从而可证,由相似三角形的性质可得,再根据平行线的性质和相似三角形的性质求出的值,即可得出答案.【详解】(1),理由如下:由直角三角板和正方形的性质得在和中,;(2)成立,证明如下:如图,过点分别作,垂足分别为,则四边形是矩形由正方形对角线的性质得,为的角平分线则在和中,;(3)如图,过点分别作,垂足分别为同(2)可知,由长方形性质得:,即在和中,.【点睛】本题考查了正方形的性质、矩形

23、的性质、三角形全等的判定定理与性质、相似三角形的判定定理与性质,较难的是题(3),通过作辅助线,构造两个相似三角形是解题关键.22、(1)证明见解析;(2)的半径为2.1【分析】(1)连接,过作于点,根据三线合一可得,然后根据角平分线的性质可得,然后根据切线的判定定理即可证出结论;(2)连接,过作于点,根据平行线的判定证出,证出,根据角平分线的性质可得,然后利用HL证出,从而得出,设的半径为,根据勾股定理列出方程即可求出结论【详解】(1)证明:如图,连接,过作于点,是底边的中点,是的切线,是的切线;(2)解:如图2,连接,过作于点点是的中点,在和中,设的半径为由勾股定理得:DK2OK2=OD2

24、即,解得:的半径为【点睛】此题考查的是等腰三角形的性质、角平分线的性质、切线的判定及性质、全等三角形的判定及性质和勾股定理,掌握等腰三角形的性质、角平分线的性质、切线的判定及性质、全等三角形的判定及性质和勾股定理是解决此题的关键23、1m高【分析】根据相似三角形的性质即可得到结论【详解】解:由于BFDB2m,即D45,DPOP灯高在CEA与COP中,AECP,OPCP,AEOPCEACOP,设APxm,OPhm,则,DPOP2+4+xh,联立两式,解得x4,h1路灯有1m高【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形的性质是解题的关键24、(1)见解析;(2)【分析】(1)根据题意,

25、证出EN与OE垂直即可; (2)求线段的长一般构造直角三角形,利用勾股定理来求解.在RtOEN、RtOCN中,EN=ON-OE,ON=OC+CN,CN=4-EN代入可求EN;同理构造直角三角形RtAED、RtEDB、RtDCB,AE=AD-DE,DE=DB-BE,DB=CD+CB=1+4=17,代入求AE.【详解】证明:连接是的垂直平分线即是半径是圆的切线解:连接设长为,则,圆的半径为解得,所以连接设AB=5,AD是直径, ADE是直角三角形则为直径, DEB是直角三角形,即(2-y)+(5-y) =17解得【点睛】本题考查了切线的判定,勾股定理的运用,在运用勾股定理时需要构造与所求线段有关的

26、直角三角形,问题关键是找到已知线段和所求线段之间的关系.25、(1);(-2,);(1,0);(2)N点的坐标为(0,),(0,);(3)E(-1,-)、F(0,)或E(-1,),F(-4,)【分析】(1)由抛物线的“衍生直线”知道二次函数解析式的a即可;(2)过A作ADy轴于点D,则可知AN=AC,结合A点坐标,则可求出ON的长,可求出N点的坐标;(3)分别讨论当AC为平行四边形的边时,当AC为平行四边形的对角线时,求出满足条件的E、F坐标即可【详解】(1),a=,则抛物线的“衍生直线”的解析式为;联立两解析式求交点,解得或,A(-2,),B(1,0);(2)如图1,过A作ADy轴于点D,在

27、中,令y=0可求得x= -3或x=1,C(-3,0),且A(-2,),AC=由翻折的性质可知AN=AC=,AMN为该抛物线的“衍生三角形”,N在y轴上,且AD=2,在RtAND中,由勾股定理可得DN=,OD=,ON=或ON=,N点的坐标为(0,),(0,);(3)当AC为平行四边形的边时,如图2 ,过F作对称轴的垂线FH,过A作AKx轴于点K,则有ACEF且AC=EF, ACK= EFH,在 ACK和 EFH中 ACK EFH,FH=CK=1,HE=AK=,抛物线的对称轴为x=-1, F点的横坐标为0或-2,点F在直线AB上,当F点的横坐标为0时,则F(0,),此时点E在直线AB下方,E到y轴的距离为EH-OF=-=,即E的纵坐标为-, E(-1,-);当F点的横坐标为-2时,则F与A重合,不合题意,舍去;当AC为平行四边形的对角线时, C(-3,0),且A(-2,),线段AC的中点坐标为(-2.5, ),设E(-1,t),F(x,y),则x-1=2(-2.5),y+t=,x= -4,y=-t,-t=-(-4)+,解得t=,E(-1,),F(-4,);综上可知存在满足条件的点F,此时E(-1,-)、(0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论