版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、浙江省湖州市吴兴区十校2023年中考一模数学测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在ABC中,C=90,B=10,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再
2、分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是AD是BAC的平分线;ADC=60;点D在AB的中垂线上;SDAC:SABC=1:1A1B2C1D42据调查,某班20为女同学所穿鞋子的尺码如表所示,尺码(码)3435363738人数251021则鞋子尺码的众数和中位数分别是( )A35码,35码B35码,36码C36码,35码D36码,36码3下列图形中,线段MN的长度表示点M到直线l的距离的是( )ABCD4的立方根是( )A8B4C2D不存在5如图,将函数y(x2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m
3、),B(4,n)平移后的对应点分别为点A、B若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()Ay(x2)2-2By(x2)2+7Cy(x2)2-5Dy(x2)2+46抢微信红包成为节日期间人们最喜欢的活动之一对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图根据如图提供的信息,红包金额的众数和中位数分别是()A20,20B30,20C30,30D20,307小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1若小昱在某页
4、写的数为101,则阿帆在该页写的数为何?()A350B351C356D3588下列函数中,y随着x的增大而减小的是( )Ay=3xBy=3xCD9如图,在坐标系中放置一菱形OABC,已知ABC=60,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60,连续翻转2017次,点B的落点依次为B1,B2,B3,则B2017的坐标为()A(1345,0)B(1345.5,)C(1345,)D(1345.5,0)10如图,在平行四边形ABCD中,ABC的平分线BF交AD于点F,FEAB若AB=5,AD=7,BF=6,则四边形ABEF的面积为()A48B35C30D2411如图
5、,在扇形CAB中,CA=4,CAB=120,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB的最小值为()A4+23B4312把多项式ax32ax2+ax分解因式,结果正确的是()Aax(x22x)Bax2(x2)Cax(x+1)(x1)Dax(x1)2二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,菱形ABCD中,AB=4,C=60,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60叫一次操作,则经过6次这样的操作菱形中心(对角线的交点)O所经过的路径总长为_14如图,ABC内接于O,AB为O的直径,CAB=60,弦AD平分CAB,若AD=6
6、,则AC=_15在ABC中,A:B:C=1:2:3,它的最小边的长是2cm,则它的最大边的长是_cm16矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足PBEDBC,若APD是等腰三角形,则PE的长为数_.17为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为_18比较大小:4 (填入“”或“”号)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知:如图1在RtABC中,C
7、=90,AC=8cm,BC=6cm,点P由点B出发沿BA方向向点A匀速运动,速度为2cm/s;同时点Q由点A出发沿AC方向点C匀速运动,速度为lcm/s;连接PQ,设运动的时间为t秒(0t5),解答下列问题:(1)当为t何值时,PQBC;(2)设AQP的面积为y(cm2),求y关于t的函数关系式,并求出y的最大值;(3)如图2,连接PC,并把PQC沿QC翻折,得到四边形PQPC,是否存在某时刻t,使四边形PQPC为菱形?若存在,求出此时t的值;若不存在,请说明理由20(6分)如图,在ABC中,BC=6,AB=AC,E,F分别为AB,AC上的点(E,F不与A重合),且EFBC将AEF沿着直线EF
8、向下翻折,得到AEF,再展开(1)请判断四边形AEAF的形状,并说明理由;(2)当四边形AEAF是正方形,且面积是ABC的一半时,求AE的长21(6分)在眉山市樱花节期间,岷江二桥一端的空地上有一块矩形的标语牌ABCD(如图)已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30,在地面的点F处,测得标语牌点A的仰角为75,且点E,F,B,C在同一直线上,求点E与点F之间的距离(计算结果精确到0.1m,参考数据:1.41,1.73)22(8分)如图,已知一次函数y=x3与反比例函数的图象相交于点A(4,n),与轴相交于点B 填空:n的值为,k的值为; 以AB为边作菱形ABCD,使
9、点C在轴正半轴上,点D在第一象限,求点D的坐标; 考察反比函数的图象,当时,请直接写出自变量的取值范围23(8分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DFBE,求证:CECF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果GCE45,请你利用(1)的结论证明:GEBEGD;运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,ADBC(BCAD),B90,ABBC,E是AB上一点,且DCE45,BE4,DE=10, 求直角梯形ABCD的面积24(10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌
10、粽子,每盒进价是40元超市规定每盒售价不得少于45元根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25(10分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每
11、天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示. (1)求与的函数关系式,并写出的取值范围; (2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少? (3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.26(12分)如图,在ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CFBC,求证:四边形OCFE是平行四边形27(12分)在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),BC平分ABO交x轴于点C(2,0)点P是
12、线段AB上一个动点(点P不与点A,B重合),过点P作AB的垂线分别与x轴交于点D,与y轴交于点E,DF平分PDO交y轴于点F设点D的横坐标为t(1)如图1,当0t2时,求证:DFCB;(2)当t0时,在图2中补全图形,判断直线DF与CB的位置关系,并证明你的结论;(3)若点M的坐标为(4,-1),在点P运动的过程中,当MCE的面积等于BCO面积的倍时,直接写出此时点E的坐标2023学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【答案解析】根据作图的过程可知,AD是BAC的平分线.故正确.如图,在
13、ABC中,C=90,B=10,CAB=60.又AD是BAC的平分线,1=2=CAB=10,1=902=60,即ADC=60.故正确.1=B=10,AD=BD.点D在AB的中垂线上.故正确.如图,在直角ACD中,2=10,CD=AD.BC=CD+BD=AD+AD=AD,SDAC=ACCD=ACAD.SABC=ACBC=ACAD=ACAD.SDAC:SABC故正确.综上所述,正确的结论是:,共有4个故选D.2、D【答案解析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数【题目详解】数据36出现了10次,
14、次数最多,所以众数为36,一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)2=36.故选D.【答案点睛】考查中位数与众数,掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数是解题的关键.3、A【答案解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离故选A4、C【答案解析】分析:首先求出的值,然后根据立方根的计算法则得出答案详解:, 的立方根为2,故
15、选C点睛:本题主要考查的是算术平方根与立方根,属于基础题型理解算术平方根与立方根的含义是解决本题的关键5、D【答案解析】函数的图象过点A(1,m),B(4,n),m=,n=3,A(1,),B(4,3),过A作ACx轴,交BB的延长线于点C,则C(4,),AC=41=3,曲线段AB扫过的面积为9(图中的阴影部分),ACAA=3AA=9,AA=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,新图象的函数表达式是故选D6、C【答案解析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数【题目详解】捐款30元的人数
16、为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选C【答案点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握7、B【答案解析】根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.【题目详解】解:小昱所写的数为 1,3,5,1,101,;阿帆所写的数为 1,8,15,22,设小昱所写的第n个数为101,根据题意得:101=1+(n-1)2,整理得:2(n-1)=100,即n-1=50,解得:n=51,则阿帆所写的第51个数为1+(51-1)1=1+501=1+350=2故选B.【答案点睛】此
17、题考查了有理数的混合运算,弄清题中的规律是解本题的关键8、B【答案解析】测试卷分析:A、y=3x,y随着x的增大而增大,故此选项错误;B、y=3x,y随着x的增大而减小,正确;C、,每个象限内,y随着x的增大而减小,故此选项错误;D、,每个象限内,y随着x的增大而增大,故此选项错误;故选B考点:反比例函数的性质;正比例函数的性质9、B【答案解析】连接AC,如图所示四边形OABC是菱形,OA=AB=BC=OCABC=60,ABC是等边三角形AC=ABAC=OAOA=1,AC=1画出第5次、第6次、第7次翻转后的图形,如图所示由图可知:每翻转6次,图形向右平移23=3366+1,点B1向右平移13
18、22(即3362)到点B3B1的坐标为(1.5, ),B3的坐标为(1.5+1322,),故选B点睛:本题是规律题,能正确地寻找规律 “每翻转6次,图形向右平移2”是解题的关键.10、D【答案解析】分析:首先证明四边形ABEF为菱形,根据勾股定理求出对角线AE的长度,从而得出四边形的面积详解:ABEF,AFBE, 四边形ABEF为平行四边形, BF平分ABC,四边形ABEF为菱形, 连接AE交BF于点O, BF=6,BE=5,BO=3,EO=4,AE=8,则四边形ABEF的面积=682=24,故选D点睛:本题主要考查的是菱形的性质以及判定定理,属于中等难度的题型解决本题的关键就是根据题意得出四
19、边形为菱形11、D【答案解析】如图,作PAP=120,则AP=2AB=8,连接PP,BP,则1=2,推出APDABP,得到BP=2PD,于是得到2PD+PB=BP+PBPP,根据勾股定理得到PP=2+82+(2【题目详解】如图,作PAP=120,则AP=2AB=8,连接PP,BP,则1=2,APABAPDABP,BP=2PD,2PD+PB=BP+PBPP,PP=2+822PD+PB47,2PD+PB的最小值为47,故选D【答案点睛】本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键12、D【答案解析】先提取公因式ax,再根据完全平方公式把x22x+1
20、继续分解即可.【题目详解】原式=ax(x22x+1)=ax(x1)2,故选D【答案点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:提公因式法;公式法;十字相乘法;分组分解法. 因式分解必须分解到每个因式都不能再分解为止.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【答案解析】第一次旋转是以点A为圆心,那么菱形中心旋转的半径就是OA,解直角三角形可求出OA的长,圆心角是60第二次还是以点A为圆心,那么菱形中心旋转的半径就是OA,圆心角是60第三次就是以点B为旋转中心,OB为半径,旋转的圆心角为60度旋转到此菱形就又回到了原图故这
21、样旋转6次,就是2个这样的弧长的总长,进而得出经过6次这样的操作菱形中心O所经过的路径总长【题目详解】解:菱形ABCD中,AB=4,C=60,ABD是等边三角形, BO=DO=2,AO=,第一次旋转的弧长=,第一、二次旋转的弧长和=+=,第三次旋转的弧长为:,故经过6次这样的操作菱形中心O所经过的路径总长为:2(+)=故答案为:【答案点睛】本题考查菱形的性质,翻转的性质以及解直角三角形的知识14、2【答案解析】首先连接BD,由AB是O的直径,可得C=D=90,然后由BAC=60,弦AD平分BAC,求得BAD的度数,又由AD=6,求得AB的长,继而求得答案【题目详解】解:连接BD,AB是O的直径
22、,C=D=90,BAC=60,弦AD平分BAC,BAD=BAC=30,在RtABD中,AB=4,在RtABC中,AC=ABcos60=4=2故答案为215、1【答案解析】根据在ABC中,A:B:C=1:2:3,三角形内角和等于180可得A,B,C的度数,它的最小边的长是2cm,从而可以求得最大边的长【题目详解】在ABC中,A:B:C=1:2:3,A+B+C=180A=30最小边的长是2cm,a=2.c=2a=1cm.故答案为:1.【答案点睛】考查含30度角的直角三角形的性质,掌握30度角所对的直角边等于斜边的一半是解题的关键.16、3或1.2【答案解析】【分析】由PBEDBC,可得PBE=DB
23、C,继而可确定点P在BD上,然后再根据APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【题目详解】四边形ABCD是矩形,BAD=C=90,CD=AB=6,BD=10,PBEDBC,PBE=DBC,点P在BD上,如图1,当DP=DA=8时,BP=2,PBEDBC,PE:CD=PB:DB=2:10,PE:6=2:10,PE=1.2; 如图2,当AP=DP时,此时P为BD中点,PBEDBC,PE:CD=PB:DB=1:2,PE:6=1:2,PE=3; 综上,PE的长为1.2或3,故答案为:1.2或3.【答案点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点
24、P在线段BD上是解题的关键.17、17【答案解析】8是出现次数最多的,众数是8,这组数据从小到大的顺序排列,处于中间位置的两个数都是9,中位数是9,所以中位数与众数之和为8+9=17.故答案为17小时.18、【答案解析】测试卷解析:4考点:实数的大小比较【题目详解】请在此输入详解!三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)当t=时,PQBC;(2)(t)2+,当t=时,y有最大值为;(3)存在,当t=时,四边形PQPC为菱形【答案解析】(1)只要证明APQABC,可得=,构建方程即可解决问题;(2)过点P作PDAC于D,则有APDABC,理由相
25、似三角形的性质构建二次函数即可解决问题;(3)存在由APOABC,可得=,即=,推出OA=(5t),根据OC=CQ,构建方程即可解决问题;【题目详解】(1)在RtABC中,AB=10,BP=2t,AQ=t,则AP=102t,PQBC,APQABC,=,即=,解得t=,当t=时,PQBC(2)过点P作PDAC于D,则有APDABC,=,即=,PD=6t,y=t(6t)=(t)2+,当t=时,y有最大值为(3)存在理由:连接PP,交AC于点O四边形PQPC为菱形,OC=CQ,APOABC,=,即=,OA=(5t),8(5t)=(8t),解得t=,当t=时,四边形PQPC为菱形【答案点睛】本题考查四
26、边形综合题、相似三角形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题20、(1)四边形AEAF为菱形理由见解析;(2)1【答案解析】(1)先证明AE=AF,再根据折叠的性质得AE=AE,AF=AF,然后根据菱形的判定方法可判断四边形AEAF为菱形;(2)四先利用四边形AEAF是正方形得到A=90,则AB=AC=BC=6,然后利用正方形AEAF的面积是ABC的一半得到AE2=66,然后利用算术平方根的定义求AE即可【题目详解】(1)四边形AEAF为菱形理由如下:AB=AC,B=C,EFBC,AEF=
27、B,AFE=C,AEF=AFE,AE=AF,AEF沿着直线EF向下翻折,得到AEF,AE=AE,AF=AF,AE=AE=AF=AF,四边形AEAF为菱形;(2)四边形AEAF是正方形,A=90,ABC为等腰直角三角形,AB=AC=BC=6=6,正方形AEAF的面积是ABC的一半,AE2=66,AE=1【答案点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等21、7.3米【答案解析】:如图作FHAE于H由题意可知HAF=HFA=45,推出AH=HF,设AH=HF=x,则EF=2x,EH=x,在RtAEB中,由E=30,AB=5
28、米,推出AE=2AB=10米,可得x+x =10,解方程即可【题目详解】解:如图作FHAE于H由题意可知HAF=HFA=45,AH=HF,设AH=HF=x,则EF=2x,EH=x,在RtAEB中,E=30,AB=5米,AE=2AB=10米,x+x=10,x=55,EF=2x=10107.3米,答:E与点F之间的距离为7.3米【答案点睛】本题考查的知识点是解直角三角形的应用-仰角俯角问题,解题的关键是熟练的掌握解直角三角形的应用-仰角俯角问题.22、 (1)3,1;(2) (4+,3);(3)或【答案解析】(1)把点A(4,n)代入一次函数y=x-3,得到n的值为3;再把点A(4,3)代入反比例
29、函数,得到k的值为1;(2)根据坐标轴上点的坐标特征可得点B的坐标为(2,3),过点A作AEx轴,垂足为E,过点D作DFx轴,垂足为F,根据勾股定理得到AB=,根据AAS可得ABEDCF,根据菱形的性质和全等三角形的性质可得点D的坐标;(3)根据反比函数的性质即可得到当y-2时,自变量x的取值范围【题目详解】解:(1)把点A(4,n)代入一次函数y=x-3,可得n=4-3=3;把点A(4,3)代入反比例函数,可得3=,解得k=1(2)一次函数y=x-3与x轴相交于点B,x-3=3,解得x=2,点B的坐标为(2,3),如图,过点A作AEx轴,垂足为E,过点D作DFx轴,垂足为F,A(4,3),B
30、(2,3),OE=4,AE=3,OB=2,BE=OE-OB=4-2=2,在RtABE中,AB=,四边形ABCD是菱形,AB=CD=BC=,ABCD,ABE=DCF,AEx轴,DFx轴,AEB=DFC=93,在ABE与DCF中,ABEDCF(ASA),CF=BE=2,DF=AE=3,OF=OB+BC+CF=2+2=4+,点D的坐标为(4+,3)(3)当y=-2时,-2=,解得x=-2故当y-2时,自变量x的取值范围是x-2或x323、(1)、(2)证明见解析(3)28【答案解析】测试卷分析:(1)根据正方形的性质,可直接证明CBECDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接
31、CF,根据(1)知BCE=DCF,即可证明ECF=BCD=90,根据GCE=45,得GCF=GCE=45,利用全等三角形的判定方法得出ECGFCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)过C作CFAD的延长线于点F则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角ADE中利用勾股定理即可求解;测试卷解析:(1)如图1,在正方形ABCD中,BC=CD,B=CDF,BE=DF,CBECDF,CE=CF;(2)如图2,延长AD至F,使DF=BE,连接CF,由(1)知CBECDF,BCE=DCFBCE+ECD=DCF+ECD
32、即ECF=BCD=90,又GCE=45,GCF=GCE=45,CE=CF,GCE=GCF,GC=GC,ECGFCG,GE=GF,GE=DF+GD=BE+GD;(3)过C作CFAD的延长线于点F则四边形ABCF是正方形AE=AB-BE=12-4=8,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角ADE中,AE2+AD2=DE2,则82+(12-x)2=(4+x)2,解得:x=1则DE=4+1=2【答案点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线24、(1)y=20 x+1600;(2)当每盒售价定为
33、60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)超市每天至少销售粽子440盒【答案解析】测试卷分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解测试卷解析:(1)由
34、题意得,=;(2)P=,x45,a=200,当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得=6000,解得,抛物线P=的开口向下,当50 x70时,每天销售粽子的利润不低于6000元的利润,又x58,50 x58,在中,0,y随x的增大而减小,当x=58时,y最小值=2058+1600=440,即超市每天至少销售粽子440盒考点:二次函数的应用25、(1)();(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚. 【答案解析】【分析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x的取值范围;(2)根据利润=每千克的利润销售量,可得关于x的二次函数,利用二次函数的性质即可求得;(3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.【题目详解】(1)设 ,将点(10,200)、(15,150)分别代入,则,解得 ,蜜柚销售不会亏本,又, , ;(2) 设利润为元,则 =, 当 时, 最大为1210, 定价为19元时,利润最大,最大利润是1210元;(3) 当 时,11040=44004800,不能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024约定子女探望权及离婚后财产分割与子女教育协议3篇
- 2025年农业科技产品研发与推广合同3篇
- 二零二五年度民宿餐饮服务员劳动协议范本3篇
- 2024年04月新疆兴业银行乌鲁木齐分行春季校园招考笔试历年参考题库附带答案详解
- 专业司机招聘协议2024版示例一
- 2025年度厂房租赁合同标准版(含租赁保证金)3篇
- 临时岗位:2024政府工作人员协议版
- 二零二四全新钢材供应链居间管理服务协议3篇
- 2025年度产业园区场商位租赁合作合同4篇
- 2025年农膜生产设备租赁与维修服务合同3篇
- 申根签证申请表模板
- 企业会计准则、应用指南及附录2023年8月
- 谅解书(标准样本)
- 2022年浙江省事业编制招聘考试《计算机专业基础知识》真题试卷【1000题】
- 认养一头牛IPO上市招股书
- GB/T 3767-2016声学声压法测定噪声源声功率级和声能量级反射面上方近似自由场的工程法
- GB/T 23574-2009金属切削机床油雾浓度的测量方法
- 西班牙语构词.前后缀
- 动物生理学-全套课件(上)
- 河北省衡水市各县区乡镇行政村村庄村名居民村民委员会明细
- DB32-T 2665-2014机动车维修费用结算规范-(高清现行)
评论
0/150
提交评论