版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、教学内容分析:本节教材选自人教 A 版数学必修第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认 (合情推理,不要求证明)归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。二、学生学习情况分析:任教的学生在年段属中下程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。三、设计思想本节课的设计遵循从具体到抽象的原则,适当运用多
2、媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。四、教学目标通过直观感知观察操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。五、教学重点与难点重点是判定定理的引入与理解,难点是判定定理的应用及立几
3、空间感、空间观念的形成与逻辑思维能力的培养。六、教学过程设计(一)知识准备、新课引入提问 1 a和平面 有哪几种位置关系?并完成下表:多媒体幻灯片演示)位置关系图形表示我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为 a 提问 2没有公共点来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。(二)判定定理的探求过程1、直观感知生 1:例举日光灯与天花板,树立的电线杆与墙面。生 2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行
4、由学生到教室门前作演示,然后教师用多媒体动画演示。学情预设:此处的预设与生成应当是很自然的,但老师要预见到可能出现的情况如电线杆与墙面可能共面的情形及门要离开门框的位置等情形。2、动手实践教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师视为线)与前、后墙面平行老师也可用事先准备的木条放在讲台桌上作上述情形的演示。
5、设计意图:设置这样动手实践的情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。3、探究思考(1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢? 平面内一条直线这两条直线平行如果平面外的直线 a 与平面 内的一条直线 b 平行,那么直线 a与平面 平行吗?4直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。 线面平行a 符号表示: |b aa|b温馨提示:作用:判定或证明线面平行。关键:在平面内找(或作)出一条直线与面外的直线平行。
6、思想:空间问题转化为平面问题(三)定理运用,问题探究(多媒体幻灯片演示)1、想一想:判断下列命题的真假?说明理由:如果一条直线不在平面内,则这条直线就与平面平行( )过直线外一点可以作无数个平面与这条直线平行()一直线上有二个点到平面的距离相等,则这条直线与平面平行(若直线 a与平面 内无数条直线平行,则 a与 的位置关系是()、a |、a C、a | 或 a 、a中的学生可能认为正确的,这样就无法达到老师的预设与生成的目的,这时教师要引导学生思考,让学生想象的空间更广阔些。此外教师可用预先准备好的羊毛针与泡沫板进行演示,让羊毛针穿过泡沫板以举不平行的反例,如果有的学生空间想象力强,能按老师的
7、要求生成正确的结果则就由个别学生进行演示。2、作一作:设 b 是二异面直线,则过b 外一点 p 且与 b 都平行的平面存在吗?若存在请画出平面,不存在说明理由?先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程。设计意图:这是一道动手操作的问题,不仅是为了拓展加深对定理的认识,更重要的是培养学生空间感与思维的严谨性。3、证一证:例 见课本 60 页例 1):已知空间四边形 ABCD 中,E、F 分别是 AB、AD 的中点,求证:EF | 平面 。变式一:空间四边形 ABCD中,E、H 分别是边 、CD、DA中点,连结A
8、CBD共 6 组线面平行)变式二:在变式一的图中如作 PQ ,使 P 点在线段 AE 上、Q 点在线段 FC 上,连结PH、,并继续探究图中所具有的线面平行位置关系?在变式一的基础上增加了 4 组线面平行,并判断四边形 、PQGH分别是怎样的四边形,说明理由。设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。例 2:如图,在正方体 A B C D 、F 分别是棱 BC 与 C D 中点,求证:1 1 1 11 1EF | 平面 BDD B1 1FD1C1A1B1DCEAB分析:根据判定定理必须在平面BDD B 内找(作一条线与
9、 EF平行,联想到中点问题找1 1中点解决的方法,可以取 BD或 B D 中点而证之。1 1思路一:取 BD中点 G 连 D 、,可证 D GEF为平行四边形。11思路二:取 D B 中点H连 、HF,可证 HFEB为平行四边形。1 1知识链接:根据空间问题平面化的思想,因此把找空间平行直线问题转化为找平行四边这种思想方法是解决立几论证平行问题,培养逻辑思维能力的重要思想方法4、练一练:练习 1:见课本 6 页练习 1、2练习 2 ABCD和 ABEF MN分别为 ACBF中点,求证:MN | 平面 BCE。 2 中 MN改为 ACBF分点且 AM = 设计意图:设计这组练习,目的是为了巩固与
10、深化定理的运用,特别是通过练习2 及其变式的训练,让学生能在复杂的图形中去识图,去寻找分析问题、解决问题的途径与方法,以达到逐步培养空间感与逻辑思维能力。(四)总结1、线面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线与这个平面平行。a 2、定理的符号表示: |b aa|b3、定理运用的关键是找(作)面内的线与面外的线平行,途径有:取中点利用平行四边形或三角形中位线性质等。七、教学反思本节“直线与平面平行的判定”是学生学习空间位置关系的判定与性质的第一节课,也是学生开始学习立几演泽推理论述的思维方式方法,因此本节课学习对发展学生的空间观念和逻辑思维能力是非常重要的。本节课的设
11、计遵循“直观感知操作确认思辩论证”的认识过程,注重引导学生通过观察、操作交流、讨论、有条理的思考和推理等活动,从多角度认识直线和平面平行的判定方法,让学生通过自主探索、合作交流,进一步认识和掌握空间图形的性质,积累数学活动的经验,发展合情推理、发展空间观念与推理能力。本节课的设计注重训练学生准确表达数学符号语言、文字语言及图形语言,加强各种语言的互译。比如上课开始时的复习引入,让学生用三种语言的表达,动手实践、定理探求过程以及定理描述也注重三种语言的表达,对例题的讲解与分析也注意指导学生三种语言的表达。本节课对定理的探求与认识过程的设计始终贯彻直观在先,感知在先,学自己身边的数学,感知生活中包
12、涵的数学现象与数学原理,体验数学即生活的道理,比如让学生举生活中能感知线面平行的例子,学生会举出日光灯与天花板,电线杆与墙面,转动的门等等,同时老师的举例也很贴进生活,如老师直立时与四周墙面平行,而向前、向后倾斜则只与左右墙面平行,而向左、右倾斜则与前后黑板面平行。然后引导学生从中抽象概括出定理。本节课对定理的运用设计了想一想、作一作、证一证、练一练等环节,能从易到难,由浅入深地强化对定理的认识,特别是对“证一证”中采用一题多解,一题多变的变式教学,有利于培养学生思维的广阔性与深刻性。本节课的设计还注重了多媒体辅助教学的有效作用,在复习引入,定理的探求以及定理的运用等过程中,都有效地使用了多媒
13、体。一、教学内容分析A版)第二章第一节第二 指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。二、学生学习况情分析指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的第一次应用。教材在之前的学习中给出了两个实际例子(GDP的增长问题和炭14对于学生来说有些陌生。本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望。三、设计思想1.函数及其图象在高中数学中占有很重要的位置。如何突破这个即重要又抽象的内容,其实质就是将抽象的
14、符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种的研究方法,以便能将其迁移到其他函数的研究中去。2.结合参加我校组织的两个课题对话反思选择和新课程实施中同伴合作和师生互动研究的研究,在本课的教学中我努力实践以下两点:.在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探
15、索的学习方式。力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。3.通过课堂教学活动向学生渗透数学思想方法。四、教学目标根据任教班级学生的实际情况,本节课我确定的教学目标是:理解指数函数的概念,能画出具体指数函数的图象;在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;在教学过程中通过类比,回顾归纳从图象和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。五、教学重点与难点教学重点:指数函数
16、的概念、图象和性质。教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。六、教学过程:(一)创设情景、提出问题(约3 分钟)师:如果让1 号同学准备 2 号同学准备 4 号同学准备 6 号同学准备 8 粒米,5 号同学准备 10 粒米,按这样的规律,51 号同学该准备多少米?学生回答后教师公布事先估算的数据:51 号同学该准备 102 粒米,大约 5 克重。师:如果改成让1 号同学准备 2 号同学准备 4 号同学准备 8 号同学准备 16 粒米,5 号同学准备 32 粒米,按这样的规律,51 号同学该准备多少米?【学情预设:学生可能说很多或能算出具体数目】师:大家能否估计一下,51
17、号同学该准备的米有多重?教师公布事先估算的数据:51 号同学所需准备的大米约重 1.2 亿吨。 亿吨是一个什么概念?根据 2007 年 9 月 13 日美国农业部发布的最新数据显示,20072008 年度我国大米产量预计为 1.27 亿吨。这就是说51 号同学所需准备的大米相当于20072008 年度我国全年的大米产量!【设计意图:用一个看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望。】在以上两个问题中,每位同学所需准备的米粒数用y表示,每位同学的座号数用x表示,y与x之间的关系分别是什么?学生很容易得出 y=2x
18、(x N )和y 2 (x N )x【xx的范围。】(二)师生互动、探究新知1指数函数的定义师:其实,在本章开头的问题 2 中,也有一个与y 2 类似的关系式y 1.073xx(xN ,x 20) 3 分钟)y 2 (x N )和y 1.073 (xN ,x 20)这两个解析式有什么共同特征?xx它们能否构成函数?是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?【设计意图:引导学生从具体问题、实际问题中抽象出数学模型。学生对比已经学过一次函数、反比例函数、二次函数,发现y 2 ,y 1.073 是一个新的函数模型,再让学生给xx这个新的函数命名,由此激发学生的学习兴趣
19、。】引导学生观察,两个函数中,底数是常数,指数是自变量。师:如果可以用字母 代替其中的底数,那么上述两式就可以表示成y a 的形式。自ax变量在指数位置,所以我们把它称作指数函数。 6 分钟)1a22x【学情预设: 若学生从教科书中已经看到指数函数的定义,教师可以问,为什么要求a ,且a 1;a 1为什么不行?y a ,教师可以引导学生通过类比一次函数(y b,k 0 xkyy ax bxc,a 0)中的限制条件, 思考指数函数中2x【设计意图 对指数函数中底数限制条件的讨论可以引导学生研究一个函数应注意它的实际意义和研究价值;接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函
20、数?教师也在黑板上写出一些解析式让学生判断,如y 23 ,y 3 ,y 2 。xx【设计意图:让学生在研究指数函数时有明确的目标:函数三个要素(对应法则、定义 】研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究?可以从图象和解析式这两个不同的角度进行研究;可以从具体的函数入手(即底数取一的性质,可见具体问题要选择适当的方法来研究才能事半功倍!还可以借助一些数学思想方法来思考。【设计意图:让学生知道图象法不是研究函数的唯一方法,由此引导学生可以从图象对学生进行数学思想方法(从一般到特殊再到一般、数形结合、分类讨论)的有机渗透。】分组活动,合作学习(约 8 分钟)师:好,下面
21、我们就从图象和解析式这两个不同的角度对指数函数进行研究。让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图象的角度入手研究指数函数;每一大组再分为若干合作小组(建议 4 每组都将研究所得到的结论或成果写出来以便交流。【】【设计意图:通过自主探索、合作学习不仅让学生充当学习的主人更可加深对所得到结论的理解。】交流、总结(约 1012 分钟)师:下面我们开一个成果展示会!教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果。教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学
22、生分析。这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其它性质?师:各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有价值的1 y a 与y ( ) 的图象关于 y 轴对称)xxa【学情预设: 首先选一从解析式的角度研究的小组上台汇报;对于从图象的角度研究的,可先选没对底数进行分类的小组上台汇报;问其它小组有没不同的看法,上台补充,让学生对底数进行分类,引导学生思考哪个【设计意图: 函数的表示法有三种:列表法、图象法、解析法,通过这个活动,让学生知道研究一个具体的函数可以也应该从多个角度入手,从图象角度研究只是能直观的看出函数的一些性质,而具体的性质还是要通过对解析式的论证;特别是定义域、值域更是可以直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论