2023学年辽宁省沈阳市法库县九年级数学第一学期期末质量跟踪监视模拟试题含解析_第1页
2023学年辽宁省沈阳市法库县九年级数学第一学期期末质量跟踪监视模拟试题含解析_第2页
2023学年辽宁省沈阳市法库县九年级数学第一学期期末质量跟踪监视模拟试题含解析_第3页
2023学年辽宁省沈阳市法库县九年级数学第一学期期末质量跟踪监视模拟试题含解析_第4页
2023学年辽宁省沈阳市法库县九年级数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每题4分,共48分)1关于的方程有实数根,则满足( )AB且C且D2如图,PA、PB

2、是O切线,A、B为切点,点C在O上,且ACB55,则APB等于( )A55B70C110D1253如图,向量与均为单位向量,且OAOB,令=+,则=()A1BCD24如果一个正多边形的内角和等于720,那么这个正多边形的每一个外角等于( )A45B60C120D1355如图,点C是线段AB的黄金分割点(ACBC),下列结论错误的是( )ABCD6计算的值为( )A1BCD7如图,二次函数的图象经过点,下列说法正确的是( )ABCD图象的对称轴是直线8如图,矩形是由三个全等矩形拼成的,与、分别交于点、,设,的面积依次为、,若,则的值为()A6B8C10D19对于反比例函数y,下列说法正确的有()

3、图象经过点(1,3);图象分布在第二、四象限;当x0时,y随x的增大而增大;点A(x1,y1)、B(x1,y1)都在反比例函数y的图象上,若x1x1,则y1y1A1个B1个C3个D4个10抛物线y=2x2,y=2x2,y=2x2+1共有的性质是()A开口向上B对称轴都是y轴C都有最高点D顶点都是原点11在RtABC中,C=90,如果,那么的值是( )A90B60C45D3012在一个不透明的袋子中共装有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有3个红球,5个黄球,若随机摸出一个红球的概率为,则这个袋子中蓝球的个数是( )A3个B4个C5个D12个二、填空题(每题4分,共24分)13

4、如图,分别以等边三角形的每个顶点为圆心,边长为半径,在另两个顶点之间作一段弧,三段弧围成的曲边三角形称为“勒洛三角形”,若等边三角形的边长为2,则“勒洛三角形”的面积为_14如图,ABC中,D、E分别在AB、AC上,DEBC,AD:AB=2:3,则ADE与ABC的面积之比为_15一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为_16将抛物线yx22x+3向上平移1个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为_17如图,正方形ABOC与正方形EFCD的边OC、CD均在x轴上,点F在AC边上,反比例函数的图象经过点A、E,且,则_.18已知中,则的长为_三、解答题(共7

5、8分)19(8分)如图,抛物线与轴交于,两点(1)求该抛物线的解析式;(2)若抛物线交轴于点,在该抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由20(8分)如图,四边形内接于,是的直径,垂足为,平分(1)求证:是的切线;(2),,求的长 21(8分)已知函数,请根据已学知识探究该函数的图象和性质过程如下:(1)该函数自变量的取值范围为;(2)下表列出y与x的几组对应值,请在平面直角坐标系中描出下列各点,并画出函数图象;x-12y321(3)结合所画函数图象,解决下列问题:写出该函数图象的一条性质:;横、纵坐标均为整数的点称为整点,若直线y= -x+b的图

6、象与该图象相交形成的封闭图形(包含边界)内刚好有6个整点,则b的取值范围为22(10分)如图,是半圆上的三等分点,直径,连接,垂足为交于点,求的度数和涂色部分的面积23(10分)如图,以ABC的BC边上一点O为圆心的圆,经过A、B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC(1)求证:AC是O的切线:(2)若BF=8,DF=,求O的半径;(3)若ADB=60,BD=1,求阴影部分的面积(结果保留根号)24(10分)如图,四边形OABC是矩形,A、C分别在y轴、x轴上,且OA6cm,OC8cm,点P从点A开始以2cm/s的速度向B运动,点Q从点B开始以1c

7、m/s的速度向C运动,设运动时间为t(1)如图(1),当t为何值时,BPQ的面积为4cm2?(2)当t为何值时,以B、P、Q为顶点的三角形与ABC相似?(3)如图(2),在运动过程中的某一时刻,反比例函数y的图象恰好同时经过P、Q两点,求这个反比例函数的解析式25(12分)关于的方程有实根(1)求的取值范围;(2)设方程的两实根分别为且,求的值26如图,点D是AOB的平分线OC上任意一点,过D作DEOB于E,以DE为半径作D,判断D与OA的位置关系,并证明你的结论 通过上述证明,你还能得出哪些等量关系? 参考答案一、选择题(每题4分,共48分)1、A【分析】分类讨论:当a=5时,原方程变形一元

8、一次方程,有一个实数解;当a5时,根据判别式的意义得到a1且a5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围【详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a5时,=(-4)2-4(a-5)(-1)0,解得a1,即a1且a5时,方程有两个实数根,所以a的取值范围为a1故选A【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b2-4ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根也考查了一元二次方程的定义2、B【分析】根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB,求得AOB110,再根

9、据切线的性质以及四边形的内角和定理即可求解【详解】解:连接OA,OB,PA,PB是O的切线,PAOA,PBOB,ACB55,AOB110,APB360909011070故选B【点睛】本题考查了多边形的内角和定理,切线的性质,圆周角定理的应用,关键是求出AOB的度数3、B【解析】根据向量的运算法则可得:=,故选B.4、B【分析】先用多边形的内角和公式求这个正多边形的边数为n,再根据多边形外角和等于360,可求得每个外角度数【详解】解:设这个正多边形的边数为n,一个正多边形的内角和为720,180(n-2)=720,解得:n=6,这个正多边形的每一个外角是:3606=60故选:B【点睛】本题考查了

10、多边形的内角和与外角和的知识应用方程思想求边数是解题关键5、B【解析】ACBC,AC是较长的线段,根据黄金分割的定义可知:= 0.618,故A、C、D正确,不符合题意;AC2=ABBC,故B错误,符合题意;故选B6、B【解析】逆用同底数幂的乘法和积的乘方将式子变形,再运用平方差公式计算即可.【详解】解:故选B.【点睛】本题考查二次根式的运算,高次幂因式相乘往往是先设法将底数化为积为1或0的形式,然后再灵活选用幂的运算法则进行化简求值.7、D【分析】根据抛物线与y轴交点的位置即可判断A选项;根据抛物线与x轴有两个交点即可判断B选项;由图象可知,当x=1时,图象在x轴的下方可知,故C错误;根据图象

11、经过点两点,即可得出对称轴为直线【详解】解:A、由图可知,抛物线交于y轴负半轴,所以c0,故A错误;B、由图可知,抛物线与x轴有两个交点,则,故B错误;C、由图象可知,当x=1时,图象在x轴的下方,则,故C错误;D、因为图象经过点两点,所以抛物线的对称轴为直线,故D正确;故选:D【点睛】本题考查了二次函数图象与系数的关系,解题的关键是掌握二次函数的图象和性质8、B【分析】由已知条件可以得到BPQDKMCNH,然后得到BPQ与DKM的相似比为,BPQ与CNH的相似比为,由相似三角形的性质求出,从而求出.【详解】解:矩形是由三个全等矩形拼成的,AB=BD=CD,AEBFDGCH,四边形BEFD、四

12、边形DFGC是平行四边形,BQP=DMK=CHN,BEDFCG,BPQ=DKM=CNH,ABQADM,ABQACH,BPQDKMCNH,;故选:B.【点睛】本题考查了相似三角形的判定和性质,矩形的性质以及平行四边形的判定和性质,解题的关键是熟练掌握相似三角形的判定和性质,正确得到,从而求出答案.9、C【解析】根据反比例函数的性质判断即可【详解】解:将x=1代入y=- y得,y=-3图象经过点(1,3);k=-3,图象分布在第二、四象限,在每个分支上,y随x的增大而增大;若点A在第二象限,点B在第四象限,则y1y1由此可得正确,故选:C【点睛】本题考查的是反比例函数的性质,理解熟记其性质是解决本

13、题的关键10、B【详解】(1)y=2x2开口向上,对称轴为y轴,有最低点,顶点为原点;(2)y=2x2开口向下,对称轴为y轴,有最高点,顶点为原点;(3)y=2x2+1开口向上,对称轴为y轴,有最低点,顶点为(0,1)故选B11、C【分析】根据锐角三角函数的定义解得即可【详解】解:由已知, C=90=45故选:C【点睛】本题考查了锐角三角函数的定义,解答关键是根据定义和已知条件构造等式求解12、B【分析】设蓝球有x个,根据摸出一个球是红球的概率是,得出方程即可求出x【详解】设蓝球有x个,依题意得解得x=4,经检验,x=4是原方程的解,故蓝球有4个,选B.【点睛】此题主要考查了概率公式的应用,用

14、到的知识点为:概率所求情况数与总情况数之比得到所求的情况数是解决本题的关键二、填空题(每题4分,共24分)13、【分析】图中勒洛三角形是由三块相同的扇形叠加而成,其面积三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可【详解】解:过作于,是等边三角形,的面积为,勒洛三角形的面积,故答案为:【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出勒洛三角形的面积三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键14、4:1【解析】由DE与BC平行,得到两对同位角相等,利用两对角相等的三角形相似得到三角形ADE与三角形ABC相似,利用相似三角形的面积之比等于相似比的平

15、方即可得到结果【详解】DEBC,ADE=B,AED=C,ADEABC,SADE:SABC=(AD:AB)2=4:1故答案为:4:1【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键15、【分析】由已知三视图为圆柱,首先得到圆柱底面半径,从而根据圆柱体积=底面积乘高求出它的体积【详解】解:由三视图可知圆柱的底面直径为4,高为6,底面半径为2,V=r2h=226=24,故答案是:24【点睛】此题考查的是圆柱的体积及由三视图判断几何体,关键是先判断圆柱的底面半径和高,然后求其体积16、或【分析】根据函数图象向上平移加,向右平移减,可得函数解析式【详解】解:将y=

16、x1-1x+3化为顶点式,得:y=(x-1)1+1将抛物线y=x1-1x+3向上平移1个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为:y=(x-1-3)1+1+1;即y=(x-4)1+3或.故答案为:或.【点睛】本题考查了二次函数图象与几何变换,函数图象的平移规律是:左加右减,上加下减17、6【分析】设正方形ABOC与正方形EFCD的边长分别为m,n,根据SAOE=S梯形ACDE+SAOC-SADE,可求出m2=6,然后根据反比例函数比例系数k的几何意义即可求解.【详解】设正方形ABOC与正方形EFCD的边长分别为m,n,则OD=m+n,SAOE=S梯形ACDE+SAOC-SAD

17、E, m2=6,点A在反比例函数的图象上,k=m2=6,故答案为:6.【点睛】本题考查了正方形的性质,割补法求图形的面积,反比例函数比例系数k的几何意义,从反比例函数(k为常数,k0)图像上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数.18、5或1【分析】作交BC于D,分两种情况:D在线段BC上;D在线段BC的延长线上,根据锐角三角函数值和勾股定理求解即可【详解】作交BC于DD在线段BC上,如图,在RtACD中,由勾股定理得 D在线段BC的延长线上,如图,在RtACD中,由勾股定理得 故答案为:5或1【点睛】本题考查了解三角形的问题,掌握锐角的三角

18、函数以及勾股定理是解题的关键三、解答题(共78分)19、(1);(2)存在,当的周长最小时,点的坐标为【分析】(1)直接利用待定系数求出二次函数解析式即可;(2)首先求出直线BC的解析式,再利用轴对称求最短路线的方法得出答案.【详解】(1)抛物线与轴交于两点解得:该抛物线的解析式为(2)该抛物线的对称轴上存在点,使得的周长最小如解图所示,作点关于抛物线对称轴的对称点,连接,交对称轴于点,连接,点关于抛物线对称轴的对称点,且,交对称轴于点,的周长为,为抛物线对称轴上一点,的周长,当点处在解图位置时,的周长最小在中,当时,抛物线的对称轴为直线,点是点关于抛物线对称轴直线的对称点,且设过点两点的直线

19、的解析式为:,在直线上,解得:,直线的解析式为:,抛物线对称轴为直线,且直线与抛物线对称轴交于点,在中,当时,在该抛物线的对称轴上存在点,使得的周长最小,当的周长最小时,点的坐标为【点睛】此题主要考查了二次函数综合应用以及待定系数法求一次函数、二次函数解析式等知识,能正确理解题意是解题关键20、(1)见解析;(2)【分析】(1)连接OA, 根据角平分线的定义及等腰三角形的性质得出,从而有 ,再通过得出,即,则结论可证;(2)根据 得,再利用角平分线的定义和直角三角形两锐角互余得出,然后利用含30的直角三角形的性质和勾股定理即可求出AE的长度【详解】(1)证明:连接 , 平分, , , , ,

20、, ,AE是O的切线;(2)是直径,又,DA平分 , ,在中,在中,,【点睛】本题主要考查角平分线的定义,等腰三角形的性质,切线的判定,勾股定理,含30的直角三角形的性质,掌握角平分线的定义,等腰三角形的性质,切线的判定,勾股定理,含30的直角三角形的性质是解题的关键21、(1):x-2;(2)见详解;(1)当x-2时,y随x的增加而减小;2b1【分析】(1)x+20,即可求解;(2)描点画出函数图象即可;(1)任意写出一条性质即可,故答案不唯一;如图2,当b=2时,直线y=-x+b的图象与该图象相交形成的封闭图形(包含边界)内刚好有6个整点(图中空心点),即可求解【详解】解:(1)x+20,

21、解得:x-2,故答案为:x-2;(2)描点画出函数图象如下:(1)当x-2时,y随x的增加而减小(答案不唯一),故答案为:当x-2时,y随x的增加而减小(答案不唯一),如图2,当b=2时,直线y=-x+b的图象与该图象相交形成的封闭图形(包含边界)内刚好有6个整点(图中空心点),故2b1,故答案为:2b1【点睛】本题考查的是一次函数图象与系数的关系,这种探究性题目,通常按照题设的顺序逐次求解,通常比较容易22、,【分析】连接OD,OC,根据已知条件得到AOD=DOC=COB=60,根据圆周角定理得到CAB=30,于是得到AFE=60;再推出AOD是等边三角形,OA=2,得到DE=,根据扇形和三

22、角形的面积公式即可得到涂色部分的面积【详解】连接,是半圆上的三等分点,则,;,是等边三角形,所以【点睛】本题考查了扇形的面积,等边三角形的判定和性质,正确的作出辅助线是解题的关键23、(1)证明见解析;(2)6;(3).【解析】(1)连接OA、OD,如图,利用垂径定理的推论得到ODBE,再利用CA=CF得到CAF= CFA,然后利用角度的代换可证明OAD+CAF=,则OAAC,从而根据切线的判定定理得到结论;(2)设0的半径为r,则OF=8-r,在RtODF中利用勾股定理得到,然后解方程即可;(3)先证明BOD为等腰直角三角形得到OB=,则OA=,再利用圆周角定理得到AOB=2ADB=,则AO

23、E=,接着在RtOAC中计算出AC,然后用一个直角三角形的面积减去一个扇形的面积去计算阴影部分的面积.【详解】(1)证明:连接OA、OD,如图,D为BE的下半圆弧的中点,ODBE,ODF+OFD=90,CA=CF,CAF=CFA,而CFA=OFD,ODF+CAF=90,OA=OD,ODA=OAD,OAD+CAF=90,即OAC=90,OAAC,AC是O的切线;(2)解:设O的半径为r,则OF=8r,在RtODF中,(8r)2+r2=()2,解得r1=6,r2=2(舍去),即O的半径为6;(3)解:BOD=90,OB=OD,BOD为等腰直角三角形,OB=BD=,OA=,AOB=2ADB=120,AOE=60,在RtOAC中,AC=OA=,阴影部分的面积=【点睛】本题主要考查圆、圆的切线及与圆相关的不规则阴影的面积,需综合运用各知识求解.24、(1)t2s时,PBQ的面积为1;(2)t为s或

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论