福建省泉州市石狮市2023学年九年级数学第一学期期末综合测试模拟试题含解析_第1页
福建省泉州市石狮市2023学年九年级数学第一学期期末综合测试模拟试题含解析_第2页
福建省泉州市石狮市2023学年九年级数学第一学期期末综合测试模拟试题含解析_第3页
福建省泉州市石狮市2023学年九年级数学第一学期期末综合测试模拟试题含解析_第4页
福建省泉州市石狮市2023学年九年级数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一

2、并交回。一、选择题(每小题3分,共30分)1如图,以下结论成立的是( )ABCD以上结论都不对2 抛物线的顶点坐标( )A(-3,4)B(-3,-4)C(3,-4)D(3,4)3如图,在等边ABC中,P为BC上一点,D为AC上一点,且APD60,BP2,CD1,则ABC的边长为()A3B4C5D64有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为()A6B7C8D95两个相似多边形一组对应边分别为3cm,4.5cm,那么它们的相似比为( )ABCD6如图,正方形OABC绕着点O逆时针旋转40得到正方形ODEF,连接AF,则OFA的度数是()A20B25C30D357如图,在平

3、面直角坐标系内,四边形ABCD为菱形,点A,B的坐标分别为(2,0),(0,1),点C,D分别在坐标轴上,则菱形ABCD的周长等于()AB4C4D208二次函数的图象如图所示,反比例函数与一次函数在同一平面直角坐标系中的大致图象是ABCD9下列说法中正确的是( )A弦是直径B弧是半圆C半圆是圆中最长的弧D直径是圆中最长的弦10如图是一个几何体的三视图,根据图中提供的数据,计算这个几何体的表面积是( )ABCD二、填空题(每小题3分,共24分)11如图,AB是O的直径,AC是O的切线,OC交O于点D,若C=40,OA=9,则BD的长为 (结果保留)12在二次函数yx2bxc中,函数y与自变量x的

4、部分对应值如下表:x2101234y7212m27则m的值为_13如图,已知的半径为1,圆心在抛物线上运动,当与轴相切时,圆心的坐标是_14点(5,)关于原点对称的点的坐标为_15如图,在ABCD中,点E在DC边上,若,则的值为_16如图,在平面直角坐标系中,ABCD的顶点B,C在x轴上,A,D两点分别在反比例函数y(x0)与y(x0)的图象上,若ABCD的面积为4,则k的值为:_17已知实数m,n满足,且,则= 18如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段弧,三段圆弧围成的曲边三角形称为勒洛三角形,若这个等边三角形的边长为3,那么勒洛三角形(曲边三角形)的周

5、长为_三、解答题(共66分)19(10分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为、五个组,表示测试成绩,组:;组:;组:;组:;组:),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有_人,请将两幅统计图补充完整;(2)抽取的测试成绩的中位数落在_组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?20(6分)某网店打出促销广告:最潮新款服装30件,每件售价300元,若一

6、次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买2件,所买的每件服装的售价均降低6元.已知该服装成本是每件200元.设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围.(2)顾客一次性购买多少件时,该网店从中获利最多,并求出获利的最大值?21(6分)综合与实践背景阅读:旋转就是将图形上的每一点在平面内绕着旋转中心旋转固定角度的位置移动,其中“旋”是过程,“转”是结果旋转作为图形变换的一种,具备图形旋转前后对应点到旋转中心的距离相等:对应点与旋转中心所连线段的夹角等于旋转角:旋转前、后的图形是全等图形等性质所以充分运用这些性质是

7、在解决有关旋转问题的关健实践操作:如图1,在RtABC中,B90,BC2AB12,点D,E分别是边BC,AC的中点,连接DE,将EDC绕点C按顺时针方向旋转,记旋转角为问题解决:(1)当0时, ;当180时, (2)试判断:当0a360时,的大小有无变化?请仅就图2的情形给出证明问题再探:(3)当EDC旋转至A,D,E三点共线时,求得线段BD的长为 22(8分)如图,四边形ABCD中,AC平分DAB,ADC=ACB=90,E为AB的中点,(1)求证:AC2=ABAD;(2)求证:CEAD;(3)若AD=4,AB=6,求的值23(8分)为加强中小学生安全教育,某校组织了“防溺水”知识竞赛,对表现

8、优异的班级进行奖励,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元;购买3副乒乓球拍和2副羽毛球拍共需204元(1)求购买1副乒乓球拍和1副羽毛球拍各需多少元;(2)若学校购买乒乓球拍和羽毛球拍共30幅,且支出不超过1480元,则最多能够购买多少副羽毛球拍?24(8分)如图,在的正方形网格中,网线的交点称为格点,点,都是格点已知每个小正方形的边长为1(1)画出的外接圆,并直接写出的半径是多少(2)连结,在网络中画出一个格点,使得是直角三角形,且点在上25(10分)抛物线与轴交于A,B两点,与轴交于点C,连接BC(1)如图1,求直线BC的表达式;(2)如图1,点P

9、是抛物线上位于第一象限内的一点,连接PC,PB,当PCB面积最大时,一动点Q从点P从出发,沿适当路径运动到轴上的某个点G处,再沿适当路径运动到轴上的某个点H处,最后到达线段BC的中点F处停止,求当PCB面积最大时,点P的坐标及点Q在整个运动过程中经过的最短路径的长;(3)如图2,在(2)的条件下,当PCB面积最大时,把抛物线向右平移使它的图象经过点P,得到新抛物线,在新抛物线上,是否存在点E,使ECB的面积等于PCB的面积若存在,请求出点E的坐标,若不存在,请说明理由26(10分)如图,在矩形ABCD中,E是边CD的中点,点M是边AD上一点(与点A,D不重合),射线ME与BC的延长线交于点N(

10、1)求证:MDENCE;(2)过点E作EF/CB交BM于点F,当MBMN时,求证:AMEF参考答案一、选择题(每小题3分,共30分)1、C【分析】根据已知条件结合相似三角形的判定定理逐项分析即可【详解】解:AOD=90,设OA=OB=BC=CD=xAB=x,AC=x,AD=x,OC=2x,OD=3x,BD=2x ,,故答案为C【点睛】本题主要考查了相似三角形的判定,如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;如果两个三角形的两个对应角相等,那么这两个三角形相似2、D【解析】根据抛物线顶点式的特点写出顶点坐标即可

11、得.【详解】因为是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为(3, 4),故选D【点睛】本题考查了抛物线的顶点,熟练掌握抛物线顶点式的特点是解题的关键.3、B【分析】根据等边三角形性质求出ABBCAC,BC60,推出BAPDPC,即可证得ABPPCD,据此解答即可,【详解】ABC是等边三角形,ABBCAC,BC60,BAP+APB18060120,APD60,APB+DPC18060120,BAPDPC,即BC,BAPDPC,ABPPCD;BP2,CD1,AB1,ABC的边长为1故选:B【点睛】本题考查了相似三角形的性质和判定,等边三角形的性质,三角形的内角和定理的应用,关键是推出ABP

12、PCD,主要考查了学生的推理能力和计算能力.4、B【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数【详解】一组数据:4,6,6,6,8,9,12,13,这组数据的中位数是,故选:B【点睛】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数5、A【解析】由题意得,两个相似多边形的一组对应边的比为3:4.5=,它们的相似比为,故选A.6、B【解析】由旋转的性质和正方形的性质可得FOC40,A

13、OODOCOF,AOC90,再根据等腰三角形的性质可求OFA的度数【详解】正方形OABC绕着点O逆时针旋转40得到正方形ODEF,FOC40,AOODOCOF,AOC90AOF130,且AOOF,OFA25故选B【点睛】本题考查了旋转的性质,正方形的性质,等腰三角形的性质,熟练运用旋转的性质解决问题是本题的关键7、C【分析】根据题意和勾股定理可得AB长,再根据菱形的四条边都相等,即可求出菱形的周长【详解】点A,B的坐标分别为(2,0),(0,1),OA2,OB1,菱形ABCD的周长等于4AB4故选:C【点睛】此题主要考查了菱形的性质,勾股定理以及坐标与图形的性质,得出AB的长是解题关键8、B【

14、解析】试题分析:由二次函数的图象知,a1, 1,b1由b1知,反比例函数的图象在一、三象限,排除C、D;由知a1,一次函数的图象与y国轴的交点在x轴下方,排除A故选B9、D【解析】试题分析:根据弦、直径、弧、半圆的概念一一判断即可 【解答】解:A、错误弦不一定是直径 B、错误弧是圆上两点间的部分 C、错误优弧大于半圆 D、正确直径是圆中最长的弦 故选D 【考点】圆的认识10、A【分析】首先根据题目所给出的三视图,判断出该几何体为个圆柱体,该圆柱体的底部圆的半径为4,高为6,之后根据每个面分别求出表面积,再将面积进行求和,即可求出答案【详解】解:根据题目所给出的三视图,判断出该几何体为个圆柱体,

15、该圆柱体的底部圆的半径为4,高为6,该几何体的上、下表面积为:,该几何体的侧面积为:,总表面积为:,故选:A【点睛】本题考查了几何体的表面积,解题的关键在于根据三视图判断出几何体的形状,并把每个面的面积分别计算出来,掌握圆、长方体等面积的计算公式也是很重要的二、填空题(每小题3分,共24分)11、132【解析】试题解析:AC是O的切线,OAC=90,C=40,AOD=50,AD的长为509180BD的长为9-52=考点:1.切线的性质;2.弧长的计算12、1【分析】二次函数的图象具有对称性,从函数值来看,函数值相等的点就是抛物线的对称点,由此可推出抛物线的对称轴,根据对称性求m的值【详解】解:

16、根据图表可以得到,点(-2,7)与(4,7)是对称点,点(-1,2)与(3,2)是对称点,函数的对称轴是:x=1,横坐标是2的点与(0,-1)是对称点,m=-1【点睛】正确观察表格,能够得到函数的对称轴,联想到对称关系是解题的关键13、或或或【分析】根据圆与直线的位置关系可知,当与轴相切时,P点的纵坐标为1或-1,把1或-1代入到抛物线的解析式中求出横坐标即可【详解】的半径为1,当与轴相切时,P点的纵坐标为1或-1当时,解得 ,此时P的坐标为或;当时,解得 ,此时P的坐标为或;故答案为:或或或【点睛】本题主要考查直线与圆的位置关系和已知函数值求自变量,根据圆与x轴相切找到点P的纵坐标的值是解题

17、的关键14、(-5,)【分析】让两点的横纵坐标均互为相反数可得所求的坐标【详解】两点关于原点对称,横坐标为-5,纵坐标为,故点P(5,)关于原点对称的点的坐标是:(-5,)故答案为:(-5,)【点睛】此题主要考查了关于原点对称的坐标的特点:两点的横坐标互为相反数;纵坐标互为相反数15、【分析】由DE、EC的比例关系式,可求出EC、DC的比例关系;由于平行四边形的对边相等,即可得出EC、AB的比例关系,易证得,可根据相似三角形的对应边成比例求出BF、EF的比例关系【详解】解:,;四边形ABCD是平行四边形,;, 故答案为:【点睛】此题主要考查了平行四边形的性质以及相似三角形的判定和性质灵活利用相

18、似三角形性质转化线段比是解题关键16、2【分析】连接OA、OD,如图,利用平行四边形的性质得AD垂直y轴,则利用反比例函数的比例系数k的几何意义得到SOAE和SODE,所以SOAD+,然后根据平行四边形的面积公式可得到ABCD的面积2SOAD2,即可求出k的值【详解】连接OA、OD,如图,四边形ABCD为平行四边形,AD垂直y轴,SOAE|3|,SODE|k|,SOAD+,ABCD的面积2SOAD23+|k|2,k0,解得k2,故答案为2【点睛】此题考查平行四边形的性质、反比例函数的性质,反比例函数图形上任意一点向两个坐标轴作垂线构成的矩形面积等于,再与原点连线分矩形为两个三角形,面积等于.1

19、7、【解析】试题分析:由时,得到m,n是方程的两个不等的根,根据根与系数的关系进行求解试题解析:时,则m,n是方程3x26x5=0的两个不相等的根,原式=,故答案为考点:根与系数的关系18、3【分析】利用弧长公式计算【详解】曲边三角形的周长=33故答案为:3【点睛】本题考查了弧长的计算:弧长公式:l(弧长为l,圆心角度数为n,圆的半径为R)也考查了等边三角形的性质三、解答题(共66分)19、(1)400,图详见解析;(2)B;(3)660人.【分析】(1)用E组的人数除以E组所占的百分比即可得出学生总人数;根据总人数乘以B组所占百分比可得B组的人数,利用A、C各组的人数除以总人数即得A、C两组

20、所占百分比,进而可补全两幅统计图;(2)根据中位数的定义判断即可;(3)利用总人数乘以A、B两组的百分比之和求解即可【详解】解:(1)4010%=400,抽取的学生共有400人;B组人数为:40030%=120,A组占:100400=25%,C组占:80400=20%,补全统计图如下:故答案为:400;(2)A组有100人,B组有120人,C组有80人,D组有60人,E组有40人, 400的最中间的两个数在B组,测试成绩的中位数落在B组故答案为:B;(3)1200(25%+30%)660,该校初三测试成绩为优秀的学生有660人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从

21、不同的统计图中得到解题的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小20、(1)y=100 x(的整数) y=x(的整数);(2)购买22件时,该网站获利最多,最多为1408元.【分析】(1)根据题意可得出销售量乘以每台利润进而得出总利润;(2)根据一次函数和二次函数的性质求得最大利润.【详解】(1)当的整数时,y与x的关系式为y=100 x;当的整数时, ,y= (的整数),y与x的关系式为:y=100 x(的整数), y=x(的整数)(2)当(的整数),y=100 x,当x=10时,利润有最大值y=1000元;当10 x30时,y=,

22、a=-30,抛物线开口向下,y有最大值,当x=时,y取最大值,因为x为整数,根据对称性得:当x=22时,y有最大值=1408元1000元,所以顾客一次性购买22件时,该网站获利最多.【点睛】本题考查分段函数及一次函数和二次函数的性质,利用函数性质求最值是解答此题的重要途径,自变量x的取值范围及取值要求是解答此题的关键之处.21、(1),;(2)无变化,证明见解析;(2)6或【分析】问题解决:(1)根据三角形中位线定理可得:BD=CDBC=6,AE=CEAC=2,即可求出的值;先求出BD,AE的长,即可求出的值;(2)证明ECADCB,可得;问题再探:(2)分两种情况讨论,由矩形的判定和性质以及

23、相似三角形的性质可求BD的长【详解】问题解决:(1)当=0时BC=2AB=3,AB=6,AC6,点D、E分别是边BC、AC的中点,BD=CDBC=6,AE=CEAC=2,DEAB,故答案为:;如图1,当=180时将EDC绕点C按顺时针方向旋转,CD=6,CE=2,AE=AC+CE=9,BD=BC+CD=18,故答案为:(2)如图2,当0260时,的大小没有变化证明如下:ECD=ACB,ECA=DCB,又,ECADCB,问题再探:(2)分两种情况讨论:如图2AC=6,CD=6,CDAD,AD3AD=BC,AB=DC,四边形ABCD是平行四边形B=90,四边形ABCD是矩形,BD=AC=6如图4,

24、连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点PAC=6,CD=6,CDAD,AD3在RtCDE中,DE=2,AE=ADDE=32=9,由(2)可得:,BD综上所述:BD=6或故答案为:6或【点睛】本题是几何变换综合题,考查了勾股定理,矩形的判定和性质,相似三角形判定和性质,正确作出辅助线,利用分类讨论思想解决问题是本题的关键22、(1)见解析(2)见解析(1)【解析】(1)由AC平分DAB,ADC=ACB=90,可证得ADCACB,然后由相似三角形的对应边成比例,证得AC2=ABAD(2)由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE=

25、AB=AE,从而可证得DAC=ECA,得到CEAD(1)易证得AFDCFE,然后由相似三角形的对应边成比例,求得的值,从而得到的值【详解】解:(1)证明:AC平分DABDAC=CABADC=ACB=90ADCACB即AC2=ABAD(2)证明:E为AB的中点CE=AB=AEEAC=ECADAC=CABDAC=ECACEAD(1)CEADAFDCFECE=ABCE=6=1AD=423、(1)购买一副乒乓球拍28元,一副羽毛球拍60元;(2)这所中学最多可购买20副羽毛球拍【分析】(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由购买2副乒乓球拍和1副羽毛球拍共需116元,购买3副乒乓球拍和2副羽

26、毛球拍共需204元,可得出方程组,解出即可(2)设可购买a副羽毛球拍,则购买乒乓球拍(30a)副,根据购买足球和篮球的总费用不超过1480元建立不等式,求出其解即可【详解】(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由题意得,解得:答:购买一副乒乓球拍28元,一副羽毛球拍60元(2)设可购买a副羽毛球拍,则购买乒乓球拍(30a)副,由题意得,60a+28(30a)1480,解得:a20,答:这所中学最多可购买20副羽毛球拍考点:一元一次不等式的应用;二元一次方程组的应用24、(1)作图见解析,半径为;(2)作图见解析【分析】(1)作AB和BC的垂直平分线,交点即为点O的位置,在网格中应用勾股定理即可求得半径;(2)只能是或,直接利用网格作图即可【详解】解:(1)作AB和BC的垂直平分线,交点即为点O,如图:,根据勾股定理可得半径为;(2)当是直角三角形时,且点在上,只能是或,利用网格作图如下:【点睛】本题考查尺规作图、确定圆的条件,掌握三角形外接圆圆心是三边线段垂直平分线的交点是解题的关键25、(1)(2)点Q按照要求经过的最短路径长为(3)存在,满足条件的点E有三个,即(,),(,), (,)【分析】(1)先求出点,的坐标,利用待定系数法即可得出结论;(2)先确定出,再利用三角形的面积公式得出,即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论