2023学年江苏省泰州市泰兴市黄桥初级中学数学九年级第一学期期末教学质量检测试题含解析_第1页
2023学年江苏省泰州市泰兴市黄桥初级中学数学九年级第一学期期末教学质量检测试题含解析_第2页
2023学年江苏省泰州市泰兴市黄桥初级中学数学九年级第一学期期末教学质量检测试题含解析_第3页
2023学年江苏省泰州市泰兴市黄桥初级中学数学九年级第一学期期末教学质量检测试题含解析_第4页
2023学年江苏省泰州市泰兴市黄桥初级中学数学九年级第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1要将抛物线平移后得到抛物线,下列平移方法正确的是( )A向左平移1个单位,再向上平移2个单位B向左平移1个单位,再向下平移2个单位C向右平移1个单位,再向上平移2个

2、单位D向右平移1个单位,再向下平移2个单位2下列判断错误的是( )A有两组邻边相等的四边形是菱形B有一角为直角的平行四边形是矩形C对角线互相垂直且相等的平行四边形是正方形D矩形的对角线互相平分且相等3若方程有两个不相等的实数根,则实数的值可能是( )A3B4C5D64已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的中位数是( )A2B3C4D55二次函数yx26x图象的顶点坐标为()A(3,0)B(3,9)C(3,9)D(0,6)6菱形中,对角线相交于点,以为圆心,以3为半径作,则四个点在上的个数为( )A1B2C3D47如图,在ABC中,AB=10,AC=8,BC=6,以边

3、AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是( )ABCD8抛物线的顶点坐标是( )A(2,1)B(2,-1)C(-2,1)D(-2,-1)9的相反数是( )ABCD310在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为( )A84株 B88株 C92株 D121株二、填空题(每小题3分,共24分)11如图,在等腰中,点是以为直径的圆与的交点,若,则图中阴影部分的面积为_12一个布袋里装有10个只有颜色不同的球,这10个球中有m个红球,从布袋中摸出一个

4、球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m的值约为_13如图,在平面直角坐标系中,点A,B,C都在格点上,过A,B,C三点作一圆弧,则圆心的坐标是_14一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使一次拨对的概率小于,则密码的位数至少要设置_位15如图,已知一次函数ykx4的图象与x轴、y轴分别交于A、B两点,与反比例函数在第一象限内的图象交于点C,且A为BC的中点,则k_16如图,某小型水库栏水坝的横断面是四边形ABCD,DCAB,测得迎水坡的坡角=30,已知背水坡的坡比为1.2:1,坝顶部DC宽为2m,坝高为6m,则坝

5、底AB的长为_m 17当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为 cm18将二次函数y=x21的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_三、解答题(共66分)19(10分)解方程:(x+3)2=2x+120(6分)如图,内接于,高的延长线交于点,(1)求的半径;(2)求的长21(6分)如图,已知抛物线yx2x3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得MAD的面积与CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,

6、在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由22(8分)解方程(1)x24x+20(2)(x3)22x623(8分)如图,在平面直角坐标系中,直线AB与y轴交于点,与反比例函数在第二象限内的图象相交于点(1)求直线AB的解析式;(2)将直线AB向下平移9个单位后与反比例函数的图象交于点C和点E,与y轴交于点D,求的面积;(3)设直线CD的解析式为,根据图象直接写出不等式的解集24(8分)如图,在平行四边形中,、分别为边、的中点,是对角线,过点作交的延长线于点(1)求证:;(2)若,求证:四边形是菱形25(10分)如图,O的

7、直径AB为10cm,弦BC为5cm,D、E分别是ACB的平分线与O,AB的交点,P为AB延长线上一点,且PCPE(1)求AC、AD的长;(2)试判断直线PC与O的位置关系,并说明理由26(10分)如图,已知,在直角坐标系中,直线与轴、轴分别交于点,点从A点开始以1个单位/秒的速度沿轴向右移动,点从点开始以2个单位/秒的速度沿轴向上移动,如果两点同时出发,经过几秒钟,能使的面积为8个平方单位参考答案一、选择题(每小题3分,共30分)1、D【分析】把抛物线解析式配方后可以得到平移公式,从而可得平移方法【详解】解:由题意得平移公式为:,平移方法为向右平移1个单位,再向下平移2个单位故选D【点睛】本题

8、考查二次函数图象的平移,经过对前后解析式的比较得到平移坐标公式是解题关键2、A【分析】根据菱形,矩形,正方形的判定逐一进行分析即可【详解】A. 有两组邻边相等的四边形不一定是菱形,故该选项错误; B. 有一角为直角的平行四边形是矩形,故该选项正确;C. 对角线互相垂直且相等的平行四边形是正方形,故该选项正确;D. 矩形的对角线互相平分且相等,故该选项正确;故选:A【点睛】本题主要考查菱形,矩形,正方形的判定,掌握菱形,矩形,正方形的判定方法是解题的关键3、A【分析】根据一元二次方程有两个实数根可得:0,列出不等式即可求出的取值范围,从而求出实数的可能值.【详解】解:由题可知:解出:各个选项中,

9、只有A选项的值满足该取值范围,故选A.【点睛】此题考查的是求一元二次方程的参数的取值范围,掌握一元二次方程根的情况与的关系是解决此题的关键.4、B【分析】根据题意由有唯一的众数4,可知x=4,然后根据中位数的定义求解即可【详解】这组数据有唯一的众数4,x=4,将数据从小到大排列为:1,2,1,1,4,4,4,中位数为:1故选B【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.5、C【分析】将二次函数解析式变形为

10、顶点式,进而可得出二次函数的顶点坐标【详解】解:yx26xx26x+99(x3)29,二次函数yx26x图象的顶点坐标为(3,9)故选:C【点睛】此题主要考查二次函数的顶点,解题的关键是熟知二次函数的图像与性质.6、B【分析】根据菱形的性质可知,AO=CO=3,OB=OD,ACBD,再根据勾股定理求出BO的长,从而可以判断出结果【详解】解:如图,由菱形的性质可得,AO=CO=3,BO=DO,ACBD,在RtABO中,BO=DO3,点A,C在上,点B,D不在上故选:B【点睛】本题考查菱形的性质、点与圆的位置关系以及勾股定理,掌握基本性质和概念是解题的关键7、C【解析】如图,设O与AC相切于点E,

11、连接OE,作OP1BC垂足为P1交O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值5+38,由此不难解决问题【详解】如图,设O与AC相切于点E,连接OE,作OP1BC垂足为P1,交O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1OQ1AB10,AC8,BC6,AB2AC2+BC2,C20OP1B20,OP1ACAOOB,P1CP1B,OP1AC4,P1Q1最小值为OP1OQ11,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值5+38,PQ长的最大值与最小值的和是2

12、故选C【点睛】本题考查了切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型8、C【分析】已知抛物线的顶点式可直接写出顶点坐标【详解】解:由抛物线的顶点坐标可知,抛物线y=(x+2)2+1的顶点坐标是(-2,1)故选C【点睛】本题考查的是抛物线的顶点坐标,即抛物线y=(x+a)2+h中,其顶点坐标为(-a,h)9、A【分析】根据相反数的意义求解即可【详解】的相反数是-,故选:A【点睛】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数10、B【解析】解:由图可得,芍药的数量为:4+(2n1)4,当n=11时,芍药的数量为:4+(21

13、11)4=4+(221)4=4+214=4+84=88,故选B点睛:本题考查规律型:图形的变化类,解答本题的关键是明确题意,发现题目中图形的变化规律二、填空题(每小题3分,共24分)11、【分析】取AB的中点O,连接OD,根据圆周角定理得出,根据阴影部分的面积扇形BOD的面积进行求解【详解】取AB的中点O,连接OD,在等腰中,阴影部分的面积扇形BOD的面积,故答案为:【点睛】本题考查了圆周角定理,扇形面积计算公式,通过作辅助线构造三角形与扇形是解题的关键12、3【解析】在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.【详解】解:根据题意得,

14、0.3,解得m3.故答案为:3.【点睛】本题考查随机事件概率的意义,关键是要知道在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近.13、(2,1)【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心【详解】根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心如图所示,则圆心是(2,1)故答案为:(2,1)【点睛】本题考查垂径定理的应用,解答此题的关键是熟知垂径定理,即“垂直于弦的直径平分弦”14、1【分析】分别求出取一位数、两位数、三位数、四位数时一次就拨对密码的概率,再根据所在的范围解答即可【详

15、解】因为取一位数时一次就拨对密码的概率为;取两位数时一次就拨对密码的概率为;取三位数时一次就拨对密码的概率为;取四位数时一次就拨对密码的概率为故一次就拨对的概率小于,密码的位数至少需要1位故答案为1【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=15、4【详解】把x0代入ykx4,得y4,则B的坐标为(0,4),A为BC的中点,C点的纵坐标为4,把y4代入,得x2,C点的坐标为(2,4),把C(2,4)的坐标代入ykx4,得2k44,解得k4,故答案为4.16、(7+6)【解析】过点C作CEAB,

16、DFAB,垂足分别为:E,F,得到两个直角三角形和一个矩形,在RtAEF中利用DF的长,求得线段AF的长;在RtBCE中利用CE的长求得线段BE的长,然后与AF、EF相加即可求得AB的长【详解】解:如图所示:过点C作CEAB,DFAB,垂足分别为:E,F,坝顶部宽为2m,坝高为6m,DC=EF=2m,EC=DF=6m,=30,BE= (m),背水坡的坡比为1.2:1,解得:AF=5(m),则AB=AF+EF+BE=5+2+6=(7+6)m,故答案为(7+6)m【点睛】本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解17、【解析】如图,连接OA,过点O作ODAB于

17、点D,ODAB,AD=AB=(91)=1设OA=r,则OD=r3,在RtOAD中,OA2OD2=AD2,即r2(r3)2=12,解得r=(cm)18、y=x1+1【解析】分析:先确定二次函数y=x11的顶点坐标为(0,1),再根据点平移的规律得到点(0,1)平移后所得对应点的坐标为(0,1),然后根据顶点式写出平移后的抛物线解析式详解:二次函数y=x11的顶点坐标为(0,1),把点(0,1)向上平移3个单位长度所得对应点的坐标为(0,1),所以平移后的抛物线解析式为y=x1+1故答案为y=x1+1点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线

18、解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式三、解答题(共66分)19、x1=3,x2=1.【分析】利用因式分解法解方程即可.【详解】(x+3)2=2(x+3) ,(x+3)22(x+3)=0 ,(x+3)(x+32)=0,(x+3)(x+1)=0 ,x1=3,x2=1.20、(1)的半径为;(2)【分析】(1)作直径,连接,由圆周角定理得,根据特殊角的三角函数值,即可求出BF,然后求出半径;(2)过作于,于,得到四边形是矩形,利用直角三角形的性质求出DG,由垂径定理得到AG=EG=ADDG,然后求出DE

19、的长度.【详解】解:(1)如图,在中,作直径,连接, ,的半径为; (2)如图,过作于,于 ,四边形是矩形, , , ;【点睛】本题考查了垂径定理,圆周角定理,特殊角的三角函数值,矩形的判定和性质,以及直角三角形的性质,解题的关键是熟练掌握所学的性质进行解题.21、(1)A点坐标为(4,0),D点坐标为(2,0),C点坐标为(0,3);(2)或或;(3)在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(2,0)或(6,6)【分析】(1)令y=0,解方程可得到A点和D点坐标;令x=0,求出y=-3,可确定C点坐标;(2)根据两个同底三角形面积相等得出它们的

20、高相等,即纵坐标绝对值相等,得出点M的纵坐标为:,分别代入函数解析式求解即可;(3)分BC为梯形的底边和BC为梯形的腰两种情况讨论即可.【详解】(1)在中令,解得,A(4,0) 、D(2,0).在中令,得,C(0,3);(2)过点C做轴的平行线,交抛物线与点,做点C关于轴的对称点,过点做轴的平行线,交抛物线与点,如下图所示:MAD的面积与CAD的面积相等,且它们是等底三角形点M的纵坐标绝对值跟点C的纵坐标绝对值相等点C的纵坐标绝对值为:点M的纵坐标绝对值为:点M的纵坐标为:当点M的纵坐标为时,则解得:或(即点C,舍去)点的坐标为:当点M的纵坐标为时,则解得:点的坐标为:,点的坐标为:点M的坐标

21、为:或或;(3)存在,分两种情况: 如图,当BC为梯形的底边时,点P与D重合时,四边形ADCB是梯形,此时点P为(2,0).如图,当BC为梯形的腰时,过点C作CP/AB,与抛物线交于点P,点C,B关于抛物线对称,B(2,3)设直线AB的解析式为,则,解得.直线AB的解析式为.CP/AB,可设直线CP的解析式为.点C在直线CP上,.直线CP的解析式为.联立,解得,P(6,6).综上所述,在抛物线上存在点P,使得以A、B、C、P四点为顶点的四边形为梯形,点P的坐标为(2,0)或(6,6).考点:1.二次函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.轴对称的应用(最短线路问题

22、);5.二次函数的性质;6.梯形存在性问题;7.分类思想的应用.22、(1)x2;(2)x3或x1【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得【详解】(1)x24x2,x24x+42+4,即(x2)22,解得x2,则x2;(2)(x3)22(x3)0,(x3)(x1)0,则x30或x10,解得x3或x1【点睛】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想)也考查了

23、配方法解一元二次方程23、(1);(2)的面积为1;(3)或【分析】(1)将点A(-1,a)代入反比例函数求出a的值,确定出A的坐标,再根据待定系数法确定出一次函数的解析式;(2)根据直线的平移规律得出直线CD的解析式为y=-x-2,从而求得D的坐标,联立方程求得交点C、E的坐标,根据三角形面积公式求得CDB的面积,然后由同底等高的两三角形面积相等可得ACD与CDB面积相等;(3)根据图象即可求得【详解】(1)点在反比例函数的图象上,点,设直线AB的解析式为,直线AB过点,解得,直线AB的解析式为;(2)将直线AB向下平移9个单位后得到直线CD的解析式为,联立,解得或,连接AC,则的面积,由平

24、行线间的距离处处相等可得与面积相等,的面积为1(3),不等式的解集是:或【点睛】此题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,三角形的面积求法,以及一次函数图象与几何变换,熟练掌握待定系数法是解题的关键24、(1)见解析;(2)见解析【分析】(1)根据已知条件证明BEDF,BEDF,从而得出四边形DFBE是平行四边形,即可证明DEBF,(2)先证明DEBE,再根据邻边相等的平行四边形是菱形,从而得出结论【详解】证明:(1)四边形ABCD是平行四边形,ABCD,ABCD点E、F分别是AB、CD的中点,BEAB,DFCDBEDF,BEDF,四边形DFBE是平行四边形,DEBF;(2)G90,AGBD,ADBG,四边形AGBD是矩形,ADB90,在RtADB中E为AB的中点,AEBEDE,四边形DFBE是平行四边形,四边形DEBF是菱形【点睛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论