版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1x3)有交点,则c的值不可能是( )A4B6C8D102某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1 400件若设这个百分数
2、为,则可列方程()ABCD3若用圆心角为120,半径为9的扇形围成一个圆锥侧面(接缝忽略不计),则这个圆锥的底面直径是()A3B6C9D124如图,如果BADCAE,那么添加下列一个条件后,仍不能确定ABCADE的是( )ABDBCAEDCD5赵州桥的桥拱可以用抛物线的一部分表示,函数关系为,当水面宽度AB为20m时,水面与桥拱顶的高度DO等于()A2mB4mC10mD16m6若点 A(1,y1),B(1,y2),C(3,y3)在反比例函数 y5x的图象上,则 y1,y2,y3 Ay1y2y3By2y1y3Cy2y3y1Dy3y2y17一元二次方程x2x2=0的解是( )Ax1=1,x2=2B
3、x1=1,x2=2Cx1=1,x2=2Dx1=1,x2=28下列一元二次方程中,没有实数根的是( )ABCD9如图,四边形内接于,若的半径为2,则的长为( )AB4CD310如图,小明将一个含有角的直角三角板绕着它的一条直角边所在的直线旋转一周,形成一个几何体,将这个几何体的侧面展开,得到的大致图形是( )ABCD11掷一枚质地均匀的硬币10次,下列说法正确的是( )A必有5次正面朝上B可能有5次正面朝上C掷2次必有1次正面朝上D不可能10次正面朝上12二次三项式配方的结果是( )ABCD二、填空题(每题4分,共24分)13如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且si
4、nCAB=,连结BC,点D为BC的中点已知点E在射线AC上,CDE与ACB相似,则线段AE的长为_; 14在平面直角坐标系中,直线y=x-2与x轴、y轴分别交于点B、C,半径为1的P的圆心P从点A(4,m )出发以每秒个单位长度的速度沿射线AC的方向运动,设点P运动的时间为t秒,则当t=_秒时,P与坐标轴相切.15如图,的顶点都在正方形网格的格点上,则的值为_.16计算sin60tan60cos45cos60的结果为_17如图,四边形ABCD是O的内接四边形,若C=140,则BOD=_ 18某班主任将其班上学生上学方式(乘公汽、骑自行车、坐小轿车、步行共4种)的调查结果绘制成下图所示的不完整的
5、统计图,已知乘坐公汽上学的有12人,骑自行车上学的有24人,乘家长小轿车上学的有4人,则步行上学的学生人数在扇形统计图对应的扇形所占的圆心角的度数为_三、解答题(共78分)19(8分)如图,二次函数的图象与x轴交于A(3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D(1)请直接写出D点的坐标(2)求二次函数的解析式(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围20(8分)如图,PA,PB是圆O的切线,A,B是切点,AC是圆O的直径,BAC=25,求P的度数.21(8分)计算:2sin60+|3|+(2)0()12
6、2(10分)如图,圆内接四边形ABDC,AB是O的直径,ODBC于E(1)求证:BCD=CBD;(2)若BE=4,AC=6,求DE的长23(10分)关于的一元二次方程有两个不相等且非零的实数根,探究满足的条件小华根据学习函数的经验,认为可以从二次函数的角度研究一元二次方程的根的符号。下面是小华的探究过程:第一步:设一元二次方程对应的二次函数为;第二步:借助二次函数图象,可以得到相应的一元二次方程中满足的条件,列表如下表。方程两根的情况对应的二次函数的大致图象满足的条件方程有两个不相等的负实根_方程有两个不相等的正实根 _(1)请将表格中补充完整;(2)已知关于的方程,若方程的两根都是正数,求的
7、取值范围.24(10分)小明代表学校参加“我和我的祖国”主题宣传教育活动,该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用、表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用、表示),参加人员在每个阶段各随机抽取一个项目完成.(1)用画树状图或列表的方法,列出小明参加项目的所有等可能的结果;(2)求小明恰好抽中、两个项目的概率.25(12分)如图,在阳光下的电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米,同一时刻,竖起一根1米高的竹竿MN,其影长MF为1.5米,求电线杆的高度26如图,为线段的中点,与交于点,且交于,交于.(1)
8、证明:.(2)连结,如果,求的长.参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:根据抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1x3)有交点,可以得到c的取值范围,从而可以解答本题抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1x3)有交点, 解得6c14考点:二次函数的性质2、B【分析】根据题意:第一年的产量+第二年的产量+第三年的产量=1且今后两年的产量都比前一年增长一个相同的百分数x【详解】解:已设这个百分数为x200+200(1+x)+200(1+x)2=1故选B【点睛】本
9、题考查对增长率问题的掌握情况,理解题意后以三年的总产量做等量关系可列出方程3、B【详解】设这个圆锥的底面半径为r,扇形的弧长=1,2r=1,2r=1,即圆锥的底面直径为1故选B4、C【分析】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案【详解】BAD CAE,A,B,D都可判定,选项C中不是夹这两个角的边,所以不相似.故选C.【点睛】考查相似三角形的判断方法,掌握相似三角形常用的判定方法是解题的关键.5、B【分析】根据题意,水面宽度AB为20则B点的横坐标为10,利用B点是函数为图象上的点即可求解y的值即DO【详解】根据题意B的横坐标为10,把x10代入,得y4,A(10,
10、4),B(10,4),即水面与桥拱顶的高度DO等于4m故选B【点睛】本题考查了点的坐标及二次函数的实际应用6、C【解析】将点A(-1,y1),B(1,y2),C(3,y3)分别代入反比例函数y5x,并求得y1、y2【详解】根据题意,得y1=-5-1=5,即y1=5,y2=-51=-5,即y2=-5,y3=-53=-53,即【点睛】本题考查的知识点是反比例函数图象上点的坐标特征,解题关键是熟记点的横纵坐标满足反比例函数的解析式7、D【解析】试题分析:利用因式分解法解方程即可解:(x2)(x+1)=0,x2=0或x+1=0,所以x1=2,x2=1故选D考点:解一元二次方程-因式分解法8、A【解析】
11、试题分析:A=25424=70,方程没有实数根,故本选项正确;B=36414=0,方程有两个相等的实数根,故本选项错误;C=1645(1)=360,方程有两个相等的实数根,故本选项错误;D=16413=40,方程有两个相等的实数根,故本选项错误;故选A考点:根的判别式9、A【分析】圆内接四边形的对角互补,可得A,圆周角定理可得BOD,再利用等腰三角形三线合一、含有30直角三角形的性质求解【详解】连接OB、OD,过点O作OEBD于点E,BOD120,BODA180,A60,BOD2A120,OBOD,OEBD,EODBOD60,BD2ED,OD2,OE1,ED,BD2,故选A【点睛】本题考查圆内
12、接四边形的对角互补、圆周角定理、等腰三角形的性质,熟悉“三线合一”是解答的关键10、C【分析】先根据面动成体得到圆锥,进而可知其侧面展开图是扇形,根据扇形的弧长公式求得扇形的圆心角,即可判别【详解】设含有角的直角三角板的直角边长为1,则斜边长为,将一个含有角的直角三角板绕着它的一条直角边所在的直线旋转一周,形成一个几何体是圆锥,此圆锥的底面周长为:,圆锥的侧面展开图是扇形,即,图C符合题意,故选:C【点睛】本题考查了点、线、面、体中的面动成体,解题关键是根据扇形的弧长公式求得扇形的圆心角11、B【分析】根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案【详解】解:掷一枚质地均匀
13、的硬币10次,不一定有5次正面朝上,选项A不正确;可能有5次正面朝上,选项B正确;掷2次不一定有1次正面朝上,可能两次都反面朝上,选项C不正确可能10次正面朝上,选项D不正确故选:B【点睛】本题考查的是随机事件,掌握随机事件的概念是解题的关键,随机事件是指在一定条件下,可能发生也可能不发生的事件12、B【解析】试题分析:在本题中,若所给的式子要配成完全平方式,常数项应该是一次项系数-4的一半的平方;可将常数项3拆分为4和-1,然后再按完全平方公式进行计算解:x2-4x+3=x2-4x+4-1=(x-2)2-1故选B考点:配方法的应用二、填空题(每题4分,共24分)13、3或9 或或【分析】先根
14、据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】AB是半圆O的直径,ACB=90,sinCAB=, ,AB=10,BC=8,,点D为BC的中点,CD=4.ACB=DCE=90,当CDE1=ABC时,ACBE1CD,如图,即,CE1=3,点E1在射线AC上,AE1=6+3=9,同理:AE2=6-3=3.当CE3D=ABC时,ABCDE3C,如图,即,CE3=,AE3=6+=,同理:AE4=6-=.故答案为:3或9 或或.【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解
15、此题容易错误的地方.14、1,3,5【分析】设P与坐标轴的切点为D, 根据一次函数图象上点的坐标特征可得出点A、B、C的坐标,即可求出AB、AC的长,可得OBC是等腰直角三角形,分P只与x轴相切、与x轴、y轴同时相切、只与y轴相切三种情况,根据切线的性质和等腰直角三角形的性质分别求出AP的长,即可得答案.【详解】设P与坐标轴的切点为D,直线y=x-2与x轴、y轴分别交于点B、C,点A坐标为(4,m),x=0时,y=-2,y=0时,x=2,x=4时,y=2,A(4,2),B(2,0),C(0,-2),AB=2,AC=4,OB=OC=2,OBC是等腰直角三角形,OBC=45,如图,当P只与x轴相切
16、时,点D为切点,P的半径为1,PDx轴,PD=1,BDP是等腰直角三角形,BD=PD=1,BP=,AP=AB-BP=,点P的速度为个单位长度,t=1,如图,P与x轴、y轴同时相切时,同得PB=,AP=AB+PB=3,点P的速度为个单位长度,t=3.如图,P只与y轴相切时,同得PB=,AP=AC+PB=5,点P的速度为个单位长度,t=5.综上所述:t的值为1、3、5时,P与坐标轴相切,故答案为:1,3,5【点睛】本题考查切线的性质及一次函数图象上点的坐标特征,一次函数图象上的点的坐标都适合该一次函数的解析式;圆的切线垂直于过切点的直径;熟练掌握切线的性质是解题关键.15、【分析】先证明ABC为直
17、角三角形,再根据正切的定义即可求解.【详解】根据网格的性质设网格的边长为1,则AB=,AC=,BC=AB2+AC2=BC2,ABC为直角三角形,A=90,=故填:.【点睛】此题主要考查正切的求解,解题的关键是证明三角形为直角三角形.16、1【分析】直接利用特殊角的三角函数值分别代入求出答案【详解】解:原式=1【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键17、80【解析】A+C=180,A=180140=40,BOD=2A=80.故答案为80.18、90【分析】先根据骑自行车上学的学生有12人占25%,求出总人数,再根据步行上学的学生人数所对应的圆心角的度数为所占的比例乘
18、以360度,即可求出答案【详解】解:根据题意得:总人数是:1225%48人,所以乘车部分所对应的圆心角的度数为36090;故答案为:90【点睛】此题主要考查了扇形统计图,读懂统计图,从统计图中得到必要的信息,列出算式是解决问题的关键三、解答题(共78分)19、(1)D(2,3);(2)二次函数的解析式为y=x22x+3;(3)一次函数值大于二次函数值的x的取值范围是x2或x1【详解】试题分析:(1)由抛物线的对称性来求点D的坐标;(2)设二次函数的解析式为y=ax2+bx+c(a0,a、b、c常数),把点A、B、C的坐标分别代入函数解析式,列出关于系数a、b、c的方程组,通过解方程组求得它们的
19、值即可;(3)由图象直接写出答案试题解析:(1)如图,二次函数的图象与x轴交于A(3,0)和B(1,0)两点,对称轴是x=1又点C(0,3),点C、D是二次函数图象上的一对对称点,D(2,3);(2)设二次函数的解析式为y=ax2+bx+c(a0,a、b、c常数),根据题意得,解得,所以二次函数的解析式为y=x22x+3;(3)如图,一次函数值大于二次函数值的x的取值范围是x2或x1考点:1、抛物线与x轴的交点;2、待定系数法;3、二次函数与不等式(组)20、P=50【解析】根据切线性质得出PA=PB,PAO=90,求出PAB的度数,得出PAB=PBA,根据三角形的内角和定理求出即可【详解】P
20、A、PB是O的切线,PA=PB,PAB=PBA,AC是O的直径,PA是O的切线,ACAP,CAP=90,BAC=25,PBA=PAB=90-25=65,P=180-PAB-PBA=180-65-65=50【点睛】本题考查了切线长定理,切线性质,三角形的内角和定理,等腰三角形的性质的应用,主要考查学生运用定理进行推理和计算的能力,题目具有一定的代表性,难度适中,熟记切线的性质定理是解题的关键21、1【分析】根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可【详解】原式=1+3+11=1【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要
21、明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行另外,有理数的运算律在实数范围内仍然适用22、 (1)详见解析;(1)1.【分析】(1)根据ODBC于E可知,所以BD=CD,故可得出结论;(1)先根据圆周角定理得出ACB=90,再ODBC于E可知ODAC,由于点O是AB的中点,所以OE是ABC的中位线,故,在RtOBE中根据勾股定理可求出OB的长,故可得出DE的长,进而得出结论【详解】解:(1)ODBC于E,BD=CD,BCD=CBD;(1)AB是O的直径,ACB=90,ODBC于E,ODAC,点O是AB的中点,OE是ABC的中位线,在RtOBE中,BE=4,OE=3,即OD=OB=5,DE=OD-OE=5-3=123、(1)方程有一个负实根,一个正实根;详见解析;(2)【分析】(1)根据函数的图象与性质即可得;(2)先求出方程的根的判别式,再利用即可得出答案.【详解】(1)由函数的图象与性质得:函数图象与x的负半轴和正半轴各有一个交点,则方程有一个负实根,一个正实根;函数图象与x轴的两个交点均在x轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025北京市个体工商户雇工劳动合同书范文
- 2025年度按摩店合伙人市场分析与竞争策略协议3篇
- 2025年度农村墓地建设项目投资合作协议书
- 二零二五年度养老公寓入住与休闲娱乐服务合同3篇
- 二零二五年度公司企业间新能源车辆购置借款合同3篇
- 2025年度工伤赔偿争议解决机制协议书3篇
- 二零二五年度养老机构兼职校医照护服务合同3篇
- 二零二五年度养殖场专业技术人员聘用合同3篇
- 二零二五年度地下停车场开发与运营管理合同3篇
- 二零二五年度智能电网设备采购合同风险识别与防范3篇
- TSG 51-2023 起重机械安全技术规程 含2024年第1号修改单
- 《正态分布理论及其应用研究》4200字(论文)
- GB/T 45086.1-2024车载定位系统技术要求及试验方法第1部分:卫星定位
- 1古诗文理解性默写(教师卷)
- 广东省广州市越秀区2021-2022学年九年级上学期期末道德与法治试题(含答案)
- 2024-2025学年六上科学期末综合检测卷(含答案)
- 在线教育平台合作合同助力教育公平
- 工地钢板短期出租合同模板
- 女排精神课件教学课件
- 2024年湖南省公务员考试《行测》真题及答案解析
- 超市消防安全巡查制度
评论
0/150
提交评论