北京市2023学年数学九年级第一学期期末考试模拟试题含解析_第1页
北京市2023学年数学九年级第一学期期末考试模拟试题含解析_第2页
北京市2023学年数学九年级第一学期期末考试模拟试题含解析_第3页
北京市2023学年数学九年级第一学期期末考试模拟试题含解析_第4页
北京市2023学年数学九年级第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1如图,将绕点,按逆时针方向旋转120,得到(点的对应点是点,点的对应点是点),连接.若,则的度数为( )A15B20 C30D452在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的

2、频率稳定在0.25左右,则红球的个数约是( )A2B12C18D243如图是一个可以自由转动的转盘,转盘分成黑、白两种颜色指针的位置固定,转动的转盘停止后,指针恰好指向白色扇形的穊率为(指针指向OA时,当作指向黑色扇形;指针指OB时,当作指向白色扇形),则黑色扇形的圆心角AOB()A40B45C50D604抛物线yax2+bx+c(a1)如图所示,下列结论:abc1;点(3,y1),(1,y2)都在抛物线上,则有y1y2;b2(a+c)2;2ab1正确的结论有()A4个B3个C2个D1个5已知是方程x23x+c0的一个根,则c的值是()A6B6CD26下列语句,错误的是()A直径是弦B相等的圆

3、心角所对的弧相等C弦的垂直平分线一定经过圆心D平分弧的半径垂直于弧所对的弦7如图是二次函数的部分图象,则的解的情况为( )A有唯一解B有两个解C无解D无法确定8一个盒子中装有2个蓝球,3个红球和若干个黄球,小明通过多次摸球试验后发现,摸取到黄球的频率稳定在0.5左右,则黄球有()个A4B5C6D109已知当x0时,反比例函数y的函数值随自变量的增大而减小,此时关于x的方程x22(k+1)x+k210的根的情况为()A有两个相等的实数根B没有实数根C有两个不相等的实数根D无法确定10圆锥的底面半径为2,母线长为6,它的侧面积为( )ABCD二、填空题(每小题3分,共24分)11若点、在同一个反比

4、例函数的图象上,则的值为_12关于x的一元二次方程kx2x+2=0有两个不相等的实数根,那么k的取值范围是_13如图,矩形中,以为圆心,为半径画弧,交延长线于点,以为圆心,为半径画弧,交于点,则图中阴影部分的面积是_14若关于的一元二次方程有实数根,则的取值范围是_15甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步560米,先到终点的人原地休息已知甲先出发2秒在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则a=_.16如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且,则_17小亮同学想测量学校旗杆的高度,他在某一时刻测得米长的竹竿竖直放置时

5、影长为米,同时测量旗杆的影长时由于影子不全落在地面上,他测得地面上的影长为米,留在墙上的影高为米,通过计算他得出旗杆的高度是_米.18已知圆锥的底面半径为3cm,母线长4cm,则它的侧面积为 cm1三、解答题(共66分)19(10分) (1)计算:2sin30+cos30tan60.(2)已知,且a+b=20,求a,b的值.20(6分)如图,在RtABC中,BAC=90,AB=AC在平面内任取一点D,连结AD(ADAB),将线段AD绕点A逆时针旋转90,得到线段AE,连结DE,CE,BD(1)请根据题意补全图1;(2)猜测BD和CE的数量关系并证明;(3)作射线BD,CE交于点P,把ADE绕点

6、A旋转,当EAC=90,AB=2,AD=1时,补全图形,直接写出PB的长21(6分)在一个不透明的口袋里有标号为的五个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球(1)下列说法:摸一次,摸出一号球和摸出号球的概率相同;有放回的连续摸次,则一定摸出号球两次;有放回的连续摸次,则摸出四个球标号数字之和可能是其中正确的序号是 (2)若从袋中不放回地摸两次,求两球标号数字是一奇一偶的概率,(用列表法或树状图)22(8分)网络比网络的传输速度快10倍以上,因此人们对产品充满期待.华为集团计划2020年元月开始销售一款产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而

7、变化.若该产品第个月(为正整数)销售价格为元/台,与满足如图所示的一次函数关系:且第个月的销售数量(万台)与的关系为.(1)该产品第6个月每台销售价格为_元;(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?(4)若每销售1万台该产品需要在销售额中扣除元推广费用,当时销售利润最大值为22500万元时,求的值.23(8分)如图,已知点在反比例函数的图像上(1)求a的值;(2)如果直线y=x+b也经过点A,且与x轴交于点C,连接AO,求的面积24(8分)已知(1)求的值;(2)若,求

8、的值25(10分)姐妹两人在50米的跑道上进行短路比赛,两人从出发点同时起跑,姐姐到达终点时,妹妹离终点还差3米,已知姐妹两人的平均速度分别为a米/秒、b米/秒(1)如果两人重新开始比赛,姐姐从起点向后退3米,姐妹同时起跑,两人能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点(2)如果两人想同时到达终点,应如何安排两人的起跑位置?请你设计两种方案26(10分)如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向点D运动,以BE为边,在BE的上方作正方形BEFG,连接CG (1)求证:;(2)若设AE=x,DH=y,当x取何值时,y有最大值?并求出这个

9、最大值;(3)连接BH,当点E运动到AD的何位置时有?参考答案一、选择题(每小题3分,共30分)1、C【分析】根据旋转的性质得到BAB=CAC=120,AB=AB,根据等腰三角形的性质易得ABB=30,再根据平行线的性质即可得CAB=ABB=30【详解】解:将ABC绕点A按逆时针方向旋转l20得到ABC,BAB=CAC=120,AB=AB,ABB=(180-120)=30,ACBB,CAB=ABB=30,CAB=CAB=30,故选:C【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角2、C【分析】根据用频率估计概率可知: 摸到

10、白球的概率为0.25,根据概率公式即可求出小球的总数,从而求出红球的个数.【详解】解:小球的总数约为:60.25=24(个)则红球的个数为:246=18(个)故选C.【点睛】此题考查的是用频率估计概率和根据概率求小球的总数,掌握概率公式是解决此题的关键.3、B【分析】根据针恰好指向白色扇形的概率得到黑、白两种颜色的扇形的面积比为1:7,计算即可【详解】解:指针恰好指向白色扇形的穊率为,黑、白两种颜色的扇形的面积比为1:7,AOB36045,故选:B【点睛】本题考查的知识点是求圆心角的度数,根据概率得出黑、白两种颜色的扇形的面积比为1:7是解此题的关键4、B【分析】利用抛物线开口方向得到a1,利

11、用抛物线的对称轴在y轴的左侧得到b1,利用抛物线与y轴的交点在x轴下方得到c1,则可对进行判断;通过对称轴的位置,比较点(-3,y1)和点(1,y2)到对称轴的距离的大小可对进行判断;由于(a+c)2-b2=(a+c-b)(a+c+b),而x=1时,a+b+c1;x=-1时,a-b+c1,则可对进行判断;利用和不等式的性质可对进行判断【详解】抛物线开口向上,a1,抛物线的对称轴在y轴的左侧,a、b同号,b1,抛物线与y轴的交点在x轴下方,c1,abc1,所以正确;抛物线的对称轴为直线x,而11,点(3,y1)到对称轴的距离比点(1,y2)到对称轴的距离大,y1y2,所以正确;x1时,y1,即a

12、+b+c1,x1时,y1,即ab+c1,(a+c)2b2(a+cb)(a+c+b)1,b2(a+c)2,所以正确;11,2ab,2ab1,所以错误故选:B【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小当a1时,抛物线向上开口;当a1时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右常数项c决定抛物线与y轴交点:抛物线与y轴交于(1,c)抛物线与x轴交点个数由判别式确定:=b2-4ac1时,抛物线与x轴有2个交点;=b2-4ac=1时,抛物线与x轴有1个交点;=b2-4ac1时,

13、抛物线与x轴没有交点5、B【解析】把x=代入方程x2-3x+c=0,求出所得方程的解即可【详解】把x=代入方程x2-3x+c=0得:3-9+c=0,解得:c=6,故选B【点睛】本题考查了一元二次方程的解的应用,解此题的关键是得出关于c的方程6、B【分析】将每一句话进行分析和处理即可得出本题答案.【详解】A.直径是弦,正确.B.在同圆或等圆中,相等的圆心角所对的弧相等,相等的圆心角所对的弧相等,错误.C.弦的垂直平分线一定经过圆心,正确.D.平分弧的半径垂直于弧所对的弦,正确.故答案选:B.【点睛】本题考查了圆中弦、圆心角、弧度之间的关系,熟练掌握该知识点是本题解题的关键.7、C【分析】根据图象

14、可知抛物线顶点的纵坐标为-3,把方程转化为,利用数形结合求解即可.【详解】根据图象可知抛物线顶点的纵坐标为-3,把转化为抛物线开口向下有最小值为-3(-3)(-4)即方程与抛物线没有交点.即方程无解.故选C.【点睛】本题考查了数形结合的思想,由题意知道抛物线的最小值为-3是解题的关键.8、B【分析】设黄球有x个,根据用频率估计概率和概率公式列方程即可.【详解】设黄球有x个,根据题意得:0.5,解得:x5,答:黄球有5个;故选:B【点睛】此题考查的是用频率估计概率和根据概率求球的数量问题,掌握用频率估计概率和概率公式是解决此题的关键.9、C【分析】由反比例函数的增减性得到k0,表示出方程根的判别

15、式,判断根的判别式的正负即可得到方程解的情况【详解】反比例函数y,当x0时,y随x的增大而减小,k0,方程中,=8k+80,方程有两个不相等的实数根故选C【点睛】本题考查了根的判别式,以及反比例函数的性质,熟练掌握反比例函数的性质是解答本题的关键10、B【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积【详解】根据圆锥的侧面积公式:rl2612,故选:B【点睛】本题主要考查了圆锥侧面积公式熟练地应用圆锥侧面积公式求出是解决问题的关键二、填空题(每小题3分,共24分)11、【分析】设反比例函数的解析式为(k为常数,k0),把A(3,8)代入函数解析式求出k,得出函

16、数解析式,把B点的坐标代入,即可求出答案【详解】解:设反比例函数的解析式为 (k为常数,k0),把A(3,8)代入函数解析式得:k=24,即,把B点的坐标代入得: 故答案为6.【点睛】考查待定系数法求反比例函数解析式,熟练掌握待定系数法是解题的关键.12、且k1【详解】解:关于x的一元二次方程有两个不相等的实数根,解得:k且k1故答案为k且k1点睛:本题考查了根的判别式、一元二次方程的定义以及二次根式有意义的条件,根据一元二次方程的定义、二次根式下非负以及根的判别式列出关于k的一元一次不等式组是解题的关键13、【分析】阴影部分的面积为扇形BDM的面积加上扇形CDN的面积再减去直角三角形BCD的

17、面积即可【详解】解:,根据矩形的性质可得出,利用勾股定理可得出,因此,可得出故答案为:【点睛】本题考查的知识点是求不规则图形的面积,熟记扇形的面积公式是解此题的关键14、,但【分析】根据一元二次方程根的判别式,即可求出答案【详解】解:一元二次方程有实数根,解得:;是一元二次方程,的取值范围是,但故答案为:,但【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型15、1【分析】由图可知,甲2秒跑了8米,可以求出甲的速度,根据乙100秒跑完了全程可知乙的速度,根据经过时间a秒,乙追上了甲,可列出方程解出a的值【详解】解:由图象可得:甲的速度为82=4米/秒,根据乙100秒跑

18、完了全程可知乙的速度为:160100=1.6米/秒,经过a秒,乙追上甲,可列方程,故答案为:1【点睛】本题考查了行程问题中的数量关系的应用,追及问题在生活中的应用,认真分析函数图象的实际意义是解题的关键16、【解析】利用位似图形的性质结合位似比等于相似比得出答案【详解】四边形ABCD与四边形EFGH位似,其位似中心为点O,且,则,故答案为:【点睛】本题考查了位似的性质,熟练掌握位似的性质是解题的关键.17、【分析】根据题意画出图形,然后利用某物体的实际高度:影长=被测物体的实际高度:被测物体的影长即可求出旗杆的高度.【详解】根据题意画出如下图形,有,则AC即为所求.设AB=x则 解得 故答案为

19、10.5.【点睛】本题主要考查相似三角形的应用,掌握某物体的实际高度:影长=被测物体的实际高度:被测物体的影长是解题的关键.18、11【解析】试题分析:圆锥的侧面积公式:圆锥的侧面积底面半径母线由题意得它的侧面积考点:圆锥的侧面积点评:本题属于基础应用题,只需学生熟练掌握圆锥的侧面积公式,即可完成.三、解答题(共66分)19、 (1); (2) a=8,b=12【分析】(1)代入特殊角的三角函数值,根据二次根式的运算法则计算即可;(2)设=k,即a=2k,b=3k,代入a+b=20,求出k的值,即可求出a,b的值.【详解】(1)原式= =1+=;(2)设=k,即a=2k,b=3k,代入a+b=

20、20,得2k+3k=20,k=4,a=8,b=12.【点睛】本题考查了特殊角的三角函数值,实数的混合运算,比例的性质,熟练掌握各知识点是解答本题的关键.20、(1)答案见解析;(2)BD=CE,证明见解析;(3)PB的长是或【解析】试题分析:(1)根据题意画出图形即可;(2)根据“SAS”证明ABDACE,从而可得BD=CE;(3)根据“SAS”可证ABDACE,从而得到ABD=ACE,再由两角对应相等的两个三角形相似可证ACDPBE,列比例方程可求出PB的长;与类似,先求出PD的长,再把PD和BD相加.解:(1)如图(2)BD和CE的数量是:BD=CE ;DAB+BAE=CAE+BAE=90

21、,DAB=CAEAD=AE,AB=AC,ABDACE,BD=CE(3)CE= .ABDACE, ABD=ACE,ACDPBE, , ;ABDPDC, , ;PB=PD+BD= .PB的长是或 21、(1);(2)【分析】(1)摸一次,1号与5号球摸出概率相同,正确;有放回的连续摸10次,不一定摸出2号球,错误;有放回的连续摸4次,若4次均摸出5号球:5+5+5+5=20,则摸出四个球标号数字之和可能是20,正确;(2)列表得出所有等可能的情况数,找出两球标号数字是一奇一偶的情况数,即可求出所求的概率【详解】(1)摸一次,1号与5号球摸出概率相同,正确;有放回的连续摸10次,不一定摸出2号球,错

22、误;有放回的连续摸4次,若4次均摸出5号球:5+5+5+5=20,则摸出四个球标号数字之和可能是20,正确;故答案为:;(2)列表如下:123451(1,2)(1,3)(1,4)(1,5)2(2,1)(2,3)(2,4)(2,5)3(3,1)(3,2)(3,4)(3,5)4(4,1)(4,2)(4,3)(4,5)5(5,1)(5,2)(5,3)(5,4)所有等可能的情况有20种,其中数字是一奇一偶的情况有12种,则P(一奇一偶)=【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22、(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(

23、4).【解析】(1)利用待定系数法将(2,6500),(4,5500)代入y=kx+b求k,b确定表达式,求当x=6时的y值即可;(2)求销售额w与x之间的函数关系式,利用二次函数的最大值问题求解;(3)分三种情况讨论假设6月份,7月份,8月份的最大销售为22500万元时,求相应的m值,再分别求出此时另外两月的总利润,通过比较作出判断.【详解】设y=kx+b,根据图象将(2,6500),(4,5500)代入得, ,解得, ,y= -500 x+7500,当x=6时,y= -5006+7500=4500元;(2)设销售额为z元,z=yp=( -500 x+7500 )(x+1)= -500 x2

24、+7000 x+7500= -500(x-7)2+32000,z与x成二次函数,a= -5000,开口向下,当x=7时,z有最大值,当x=7时,y=-5007+7500=4000元.答:该产品第7个月的销售额最大,该月的销售价格是4000元/台.(3)z与x的图象如图的抛物线当y=27500时,-500(x-7)2+32000=27500,解得,x1=10,x2=4预计销售部符合销售要求的是4,5,6,7,8,9,10月份.(4)设总利润为W= -500 x2+7000 x+7500-m(x+1)= -500 x2+(7000-m)x+7500-m,第一种情况:当x=6时,-50062+(70

25、00-m) 6+7500-m=22500,解得,m= ,此时7月份的总利润为-50072+(7000-) 7+7500-1771422500,此时8月份的总利润为-50082+(7000-) 8+7500-1992922500,当m=1187.5不符合题意,此种情况不存在.第三种情况:当x=8时,-50082+(7000-m) 8+7500-m=22500,解得,m=1000 ,此时7月份的总利润为-50072+(7000-1000) 7+7500-1000=2400022500,当m=1000不符合题意,此种情况不存在.当时销售利润最大值为22500万元时,此时m=.【点睛】本题考查二次函数

26、的实际应用,最大利润问题,利用二次函数的最值性质是解决实际问题的重要途径.23、(1)2;(2)1【分析】(1)将A坐标代入反比例函数解析式中,即可求出a的值;(2)由(1)求出的a值,确定出A坐标,代入直线解析式中求出b的值,令直线解析式中y=0求出x的值,确定出OC的长,AOC以OC为底,A纵坐标为高,利用三角形面积公式求出即可【详解】(1)将A(1,a)代入反比例解析式得:;(2)由a=2,得到A(1,2),代入直线解析式得:1+b=2,解得:b=1,即直线解析式为y=x+1,令y=0,解得:x=-1,即C(-1,0),OC=1,则SAOC=12=1【点睛】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,三角形的面积求法,熟练掌握待定系数法是解本题的关键24、(1)3;(2)a=-4,b=-6,c=-8.【解析】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论