人教版高一数学必修2练习题_第1页
人教版高一数学必修2练习题_第2页
人教版高一数学必修2练习题_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、用心爱心专心用心爱心专心119号编辑 高一数学必修2练习题一、选择题(3X10=30分)1.图I是由下列哪个平面图旋转得到的(A)ABCDABCD2下图所示的是一个立体图形的三视图,请说出立体图形的名称为(C正视图侧视图正视图侧视图A.圆柱;A.圆柱;B.棱锥;C.长方体;D.棱台;3设有不同的直线a,b和不同的平面a,p,y,给出下列三个命题:若a/a,b/a,则a/b;若a/a,a/p,则a/p;若a丄丄y,则a/p;其中正确的个数是()A0;B1;C2;D3;4长方体一个顶点上的三条棱长分别是3,4,5,若它的八个顶点都在同一个球面上,则这个球的表面积是()A.2012冗;B.25t2冗

2、;C.50k;D.200k;若2xV0,则经过两点P1(0,cosx),P2(sinx,0)的直线的倾斜角为(C)A.x;B.-x;C.A.x;B.-x;C.2+x;D.k+x;平行于直线2x-y+1=0且与圆x2+y2=5相切的直线的方程是(D)A.2xy+5=0;B.2xy5=0;C.2x+y+5=0或2x+y5=0;D.2xy+5=0或2xy5=0;若实数x,y满足+y2=1,则x+y的最大值是(A)4A.*5;B.2+5;C.J3;D.直线xcos0+ysin0+a=0与圆x2+y2=a2交点的个数是(B)A.0;B.1;C.2;D.随0的变化而变化;9以等腰直角三角形9以等腰直角三角

3、形ABC斜边BC上的高AD为折痕,将AABC折成二面角CADB等于()时,在折成的图形中,AABC为等边三角形。A90o;B60o;C45o;D30o;若圆满足:截y轴所得弦长为2;被x轴分成两段圆弧,其弧长的比为3:1,在满足条件的所有圆中,圆心到直线L:x2y=0的距离最小的圆的方程为(B)A.x2+y212x16y3=0;B.x2+y212x16y3=0;C.x2+y212x+16y3=0;D.x2+y212x16y+3=0;二、填空题(3X4=12分两直线2x+3yk=0和xky+12二0的交点在y轴上,则k的值是线段AB两端点到平面a的距离都等于2,那么线段AB所在直线与平面a的位置

4、关系是。已知AB,CD是夹在两个平行平面a,p间的线段,AB在a上的射影是3cm,CD在卩上的射影是215cm,若AB与CD的长相差1cm,贝V平面a,p间的距离是。已知等腰三角形ABC的顶点A(4,2),底边一端点B(3,5),则另一端点C的轨迹方程是三、解答题(8810101012=58分)求过直线x2y+3=0和2x+y4=0的交点,且与直线f3x-y-=0成30。角;16.如图所示,在底面是直角梯形的四棱锥SABCD中,ZABC=90O,SA丄平面ABCDC1CSA=AB=BC=1,AD=求四棱锥SABCD的体积;求平面SCD与平面SBA所成的二面角的正切值;17如图所示,PA丄矩形ABCD所在平面,M,N分别是AB,PC的中点,(1)求证:MN/平面PAD;(2)求证:MN丄CD;(3)若ZPDA=45。,求证:MN丄平面PCD;如图,在四棱锥PABCD中,底面ABCD是一直角梯形,ZBAD=90。,AD/BC,AB=BC=a,AD=2a,PD与底面成30。角,PA丄底面ABCD,(1)若AE丄PD于E,求证:BE丄PD;(2)求异面直线AE,CD所成角的大小;已知点A(1,4),B(6,2),试问在直线x-3y+3=0上是否存在点C,使得三角形ABC的面积等于14?若存在,求出C点坐标;若不存在,说

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论