版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每题4分,共48分)1下列各组图形中,一定相似的是( )A任意两个圆B任意两个等腰三角形C任意两个菱形D任意两个矩形2下列运算正确的是()Ax6x3x2B(x3)2x5CD3受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,
2、若设快递平均每年增长率为x,则下列方程中,正确的是()A600(1+x)950B600(1+2x)950C600(1+x)2950D950(1x)26004下列反比例函数图象一定在第一、三象限的是( )ABCD5在RtABC中,C90,B35,AB3,则BC的长为()A3sin35BC3cos35D3tan356近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5 m,则y与x的函数关系式为()Ay100 xByCy200 xDy7函数与的图象如图所示,有以下结论:b24c1;bc1;3bc61;当13时,1其中正确的个数为( )A1个B2个C3个D4个8如
3、图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角ABO为,则树OA的高度为( )A米B30sin米C30tan米D30cos米9书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是( )ABCD10如图,在矩形ABCD中,AB=4,AD=3,若以A为圆心,4为半径作A.下列四个点中,在A外的是( )A点AB点BC点CD点D11如图,在边长为1的小正方形网格中,点都在这些小正方形的顶点上,则的余弦值是( )ABCD12如图,12,则下列各式不能说明ABCADE的是()ADBBECCD二、填空题(每题4分,共24分)13如图,已知一块圆心角为
4、270的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是_cm14计算:(3)0+()2(1)2_15如图,在中,点是斜边的中点,则_;16请你写出一个函数,使它的图象与直线无公共点,这个函数的表达式为_17如图,物理课上张明做小孔成像试验,已知蜡烛与成像板之间的距离为24cm,要使烛焰的像AB是烛焰AB的2倍,则蜡烛与成像板之间的小孔纸板应放在离蜡烛_cm的地方18如图,在RtABC中,CD是AB边上的高,已知AB25,BC15,则BD_三、解答题(共78分)19(8分)如图,已知正方形,点在延长线上,点在延长线上,连接、交于点,若,求证
5、:20(8分)九章算术是中国古代第一部数学专著,是算经十书中最重要的一种,成于公元一世纪左右在其“勾股”章中有这样一个问题:“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB,AD的中点,EGAB,FHADEG15里,HG经过点A,则FH等于多少里?请你根据上述题意,求出FH的长度21(8分)如图,山顶有一塔AB,塔高33m计划在塔的正下方沿直线CD开通穿山隧道EF,从与E点相距80m的C处测得A、B的仰角分别为27、22,从与F点相距50m的D处测得A的仰
6、角为45求隧道EF的长度(参考数据:tan220.40,tan270.51)22(10分)已知关于的一元二次方程(1)请判断是否可为此方程的根,说明理由(2)是否存在实数,使得成立?若存在,请求出的值;若不存在,请说明理由23(10分)如图所示,在边长为1的正方形组成的网格中,AOB的顶点均在格点上,点A,B的坐标分别是A(3,3)、B(1,2),AOB绕点O逆时针旋转90后得到A1OB1(1)画出A1OB1,直接写出点A1,B1的坐标;(2)在旋转过程中,点B经过的路径的长24(10分)已知:梯形ABCD中,AD/BC,AD=AB,对角线AC、BD交于点E,点F在边BC上,且BEF=BAC(
7、1)求证:AEDCFE;(2)当EF/DC时,求证:AE=DE25(12分)如图,在长为32m,宽为20m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,要使道路的面积比草坪面积少440(1)求草坪面积;(2)求道路的宽26如图,BD为O的直径,点A是劣弧BC的中点,AD交BC于点E,连结AB(1)求证:AB2=AEAD;(2)若AE=2,ED=4,求图中阴影的面积参考答案一、选择题(每题4分,共48分)1、A【分析】根据相似图形的性质,对各选项分析判断即可得出答案.【详解】A、任意两个圆,一个圆放大或缩小后能够与另外一个圆重合,所以任意两个圆一定是相似图形,故选A.B、任意
8、两个等腰三角形,对应边不一定成比例,对应角不一定相等,所以不一定相似,故本选项错误.C、任意两个菱形,对应边成比例,但对应角不一定相等,所以不一定相似,故本选项错误. D、任意两个矩形,对应边不一定成比例,对应角都是直角,一定相等,所以也不一定相似,故本选项错误.故选A.【点睛】本题考查了相似图形的概念,灵活运用相似图形的性质是解题的关键.2、D【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则,算术平方根的定义以及立方根的定义逐一判断即可【详解】解:Ax6x3x3,故本选项不合题意;B(x3)2x6,故本选项不合题意;C.,故本选项不合题意;D.,正确,故本选项符合题意故选:D【点睛】本题
9、主要考查了算术平方根、立方根、同底数幂的除法以及幂的乘方与积的乘方,熟记修改运算法则是解答本题的关键3、C【分析】设快递量平均每年增长率为,根据我国2018年及2020年的快递业务量,即可得出关于的一元二次方程,此题得解【详解】设快递量平均每年增长率为x,依题意,得:600(1+x)2=1故选:C【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键4、A【分析】根据反比例函数的性质,函数若位于一、三象限,则反比例函数系数k0,对各选项逐一判断即可【详解】解:A、m2+10,反比例函数图象一定在一、三象限; B、不确定;C、不确定;D、不确定故选:A【点
10、睛】本题考查了反比例函数的性质,理解反比例函数的性质是解题的关键5、C【分析】根据余弦定义求解即可【详解】解:如图,C90,B35,AB3,cos35,BC3cos35故选:C【点睛】本题考查了锐角三角函数,属于基础题型,熟练掌握余弦的定义是解此题的关键6、A【解析】由于近视镜度数y(度)与镜片焦距x(米)之间成反比例关系可设y=kx,由200度近视镜的镜片焦距是0.5米先求得k【详解】由题意,设ykx由于点(0.5,200)适合这个函数解析式,则k0.5200100,y100 x故眼镜度数y与镜片焦距x之间的函数关系式为y100 x故选:A.【点睛】本题考查根据实际问题列反比例函数关系式,解
11、答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式7、C【分析】利用二次函数与一元二次方程的联系对进行判断;利用,可对进行判断;利用,对进行判断;根据时,可对进行判断 【详解】解:抛物线与轴没有公共点,所以错误;,即,所以正确;,所以正确;时,的解集为,所以正确 故选:C【点睛】本题考查二次函数图象与系数的关系、二次函数与一元二次方程、二次函数与不等式,掌握二次函数的性质是解题的关键8、C【解析】试题解析:在RtABO中,BO=30米,ABO为,AO=BOtan=30tan(米)故选C考点:解直角三角形的应用-仰角俯角问题9、A【分析】画树状图(用A、B、C表示三
12、本小说,a、b表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解【详解】画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,从中随机抽取2本都是小说的概率故选:A【点睛】本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键10、C【解析】连接AC,利用勾股定理求出AC的长度,即可解题.【详解】解:如下图,连接AC,圆A的半径是4,AB=4,AD=3,由勾股定理可知对角线AC=5,D在圆A内,B在圆上,C在圆外,故选C.【点睛】本题考查了圆的简单性质,属
13、于简单题,利用勾股定理求出AC的长是解题关键.11、D【分析】由题意可知AD=2,BD=3,利用勾股定理求出AB的长,再根据余弦的定义即可求出答案【详解】解:如下图,根据题意可知,AD=2,BD=3,由勾股定理可得:,的余弦值是:故选:D【点睛】本题考查的知识点是利用网格求角的三角函数值,解此题的关键是利用勾股定理求出AB的长12、D【分析】根据12,可知DAEBAC,因此只要再找一组角或一组对应边成比例即可【详解】解:A和B符合有两组角对应相等的两个三角形相似;C、符合两组对应边的比相等且相应的夹角相等的两个三角形相似;D、对应边成比例但无法证明其夹角相等,故其不能推出两三角形相似故选D【点
14、睛】考查了相似三角形的判定:有两个对应角相等的三角形相似;有两个对应边的比相等,且其夹角相等,则两个三角形相似;三组对应边的比相等,则两个三角形相似二、填空题(每题4分,共24分)13、40cm【解析】首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可【详解】圆锥的底面直径为60cm,圆锥的底面周长为60cm,扇形的弧长为60cm,设扇形的半径为r,则=60,解得:r=40cm,故答案为:40cm【点睛】本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解14、1【分析】直接利用零指数幂的性质以及负整数指数幂
15、的性质分别化简,得出答案【详解】原式1+111故答案为:1【点睛】本题主要考查零指数幂的性质以及负整数指数幂的性质,牢记负整数指数幂的计算方法,是解题的关键.15、5【分析】根据直角三角形斜边上的中线等于斜边的一半、等边三角形的判定和性质解答【详解】解:在中,点是斜边的中点, BD =AD,BCD是等边三角形,BD=BC=5.故答案为:5.【点睛】本题考查直角三角形斜边上的中线的性质,解题关键是熟练掌握直角三角形斜边上的中线等于斜边的一半16、(答案不唯一)【分析】直线经过一三象限,所以只要找到一个过二、四象限的函数即可.【详解】直线经过一三象限,图象在二、四象限两个函数无公共点故答案为【点睛
16、】本题主要考查正比例函数的图象与性质,掌握正比例函数与反比例函数的图象与性质是解题的关键.17、8【解析】设蜡烛距小孔cm,则小孔距成像板cm,由题意可知:ABAB,ABOABO,解得:(cm).即蜡烛与成像板之间的小孔相距8cm.点睛:相似三角形对应边上的高之比等于相似比.18、9【分析】利用两角对应相等两三角形相似证BCDBAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:,,ACB=CDB=90,B=B,BCDBAC, ,BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例
17、式求解是解答此题的关键.三、解答题(共78分)19、见解析.【分析】根据已知条件证明ADGCDF,得到ADG=CDF,根据ADBC,推出CDF=E,由此证明CDECFD,即可得到答案.【详解】四边形ABCD是正方形,A=BCD=90,AD=CD,DCF=A=90,又,ADGCDF,ADG=CDF,ADBC,ADG=E,CDF=E,BCD=DCF=90,CDECFD,.【点睛】此题考查正方形的性质,三角形全等的判定及性质,三角形相似的判定及性质,在证明题中证明线段成比例的关系通常证明三角形相似,由此得到边的对应比的关系,注意解题方法的积累.20、1.1里【分析】通过证明HFAAEG,然后利用相似
18、比求出FH即可【详解】四边形ABCD是矩形,EGAB,FHAD,HFADABAEG90,FAEGHAFGHFAAEG,即,解得FH1.1答:FH等于1.1里【点睛】本题考查了相似三角形的应用:利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求线段的长度21、隧道的长度约为.【分析】延长AB交CD于H,利用正切的定义用CH表示出AH、BH,根据题意列式求出CH,计算即可【详解】解:如图,延长交于点,则.在中,.在中,.,.在中,.因此,隧道的长度约为.【点睛】本题考查的是解直角三角形的应用仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键22、(1)不是此方
19、程的根,理由见解析;(2)存在,或【分析】(1)将代入一元二次方程中,得到一个关于p的一元二次方程,然后用根的判别式验证关于p的一元二次方程是否存在实数根即可得出答案;(2)根据一元二次方程根与系数的关系可知,然后代入到中,解一元二次方程,若有解,则存在这样的p,反之则不存在【详解】(1)若是方程的根,则,不是此方程的根(2)存在实数,使得成立,且即存在实数,当或时,成立【点睛】本题主要考查一元二次方程根与系数的关系,根的判别式,掌握一元二次方程根与系数的关系是解题的关键23、(1)A1(3,3),B1(2,1);(2) 【解析】试题分析:(1)根据网格结构找出点绕点逆时针旋转90后的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标;(2)利用勾股定理列式求出的长,再利用弧长公式列式计算即可得解;试题解析:(1)如图,(2)由可得: 24、(1)证明见解析;(2)证明见解析【解析】试题分析:两组角对应相等,两个三角形相似.证明根据相似三角形对应边成比例,即可证明.试题解析:(1) 又 AD/BC, (2)EF/DC, AD/BC,即, 25、(1)540;(2)2m【分析】(1)根据地面的长宽得到地面的面积,再
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肝硬化说课件的
- 版西安市房屋租赁合同自行成交版
- 2024版房地产开发项目土石方运输合同3篇
- 2024年度工程款结算审计合同2篇
- 手车辆销售合同模板完整版
- 物理化学期中复习 第十五章
- 人教版九年级化学第十二单元1人类重要的营养物质分层作业课件
- 2024年度电子合同在教育电子商务中的应用与法律框架
- 人教版九年级化学第九单元溶液3溶液的浓度课时1溶质的质量分数溶液的稀释或浓缩教学课件
- 新员工培训实施方案策划
- 全国消防宣传月《全民消防、生命至上》专题讲座
- GB/T 44773-2024高压直流换流站直流功率远方自动控制(ADC)技术规范
- 英语课博会课件-主题bully(校园欺凌)(共14张课件)
- 第四单元《-参考活动3-设计橡皮章》说课稿 -2024-2025学年初中综合实践活动苏少版八年级上册
- 《中国近现代史纲要》题库及参考答案
- 2024年浙江省中考语文真题(含答案解析)
- 《勇敢的心》电影赏析
- 《神经重症患者肠内营养护理专家共识》解读课件
- 第六单元(单元测试)-2024-2025学年统编版语文六年级上册
- 《地表水水质自动监测站(重金属)验收技术规范》(征求意见稿)
- 中国陶瓷史学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论