版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1如图,在正方形中,点是对角线的交点,过点作射线分别交于点,且,交于点给出下列结论:;C;四边形的面积为正方形面积的;其中正确的是()ABCD2下列方程中是一元二次方程的是( )ABCD3方程的根是( )ABCD4下列几何体中,同一个几何体的主视图与左视
2、图不同的是( )ABCD5用配方法解方程x22x50时,原方程应变形为()A(x+1)26B(x+2)29C(x1)26D(x2)296把抛物线先向左平移个单位,再向下平移个单位,得到的抛物线的表达式是( )ABCD7用配方法解方程,下列配方正确的是( )ABCD8如图是用围棋棋子在66的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A黑(1,5),白(5,5)B黑(3,2),白(3,3)C黑(3,3),白(3,1)D黑(3,1),白(3,3)9若双曲线的图象的一支位于第
3、三象限,则k的取值范围是()Ak1Bk1C0k1Dk110设抛物线的顶点为M ,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1 ( )ABCD (a为任意常数)二、填空题(每小题3分,共24分)11如图,PA、PB是O的两条切线,点A、B为切点,点C在O上,且ACB55,则APB=_12如图:在ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么ACD的周长是_13如图,已知直线yx+2分别与x轴,y轴交于A,B两点,与双曲线y交于E,F两点,若AB2EF,则k的值是_14如图,一个宽为2
4、 cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是_cm15把多项式分解因式的结果是 16如图,在ABC中,C=90,A=,AC=20,请用含的式子表示BC的长_ 17如图,是的直径,点在上,且,垂足为,则_18关于x的方程(m2)x22x+10是一元二次方程,则m满足的条件是_.三、解答题(共66分)19(10分)如图,AD是O的直径,AB为O的弦,OPAD,OP与AB的延长线交于点P,过B点的切线交OP于点C(1)求证:CBP=ADB(2)若OA=2,AB=1,求线段BP的长.20(6分)在一
5、个不透明的袋子中装有大小、形状完全相同的三个小球,上面分别标有1,2,3三个数字(1)从中随机摸出一个球,求这个球上数字是奇数的概率是 ;(2)从中先随机摸出一个球记下球上数字,然后放回洗匀,接着再随机摸出一个,求这两个球上的数都是奇数的概率(用列表或树状图方法)21(6分)(1)(教材呈现)下图是华师版九年级上册数学教材第77页的部分内容请根据教材提示,结合图23.4.2,写出完整的证明过程(2)(结论应用)如图,ABC是等边三角形,点D在边AB上(点D与点A、B不重合),过点D作DEBC交AC于点E,连结BE,M、N、P分别为DE、BE、BC的中点,顺次连结M、N、P求证:MNPN;MNP
6、的大小是22(8分)如图1,在矩形中,是边上一点,连接,将矩形沿折叠,顶点恰好落在边上点处,延长交的延长线于点(1)求线段的长;(2)如图2,分别是线段,上的动点(与端点不重合),且求证:;是否存在这样的点,使是等腰三角形?若存在,请求出的长;若不存在,请说明理由23(8分)如图,在平面直角坐标系中,的三个顶点的坐标分别为点、.(1)的外接圆圆心的坐标为 .(2)以点为位似中心,在网格区域内画出,使得与位似,且点与点对应,位似比为2:1,点坐标为 .(3)的面积为 个平方单位.24(8分)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团
7、成员在校园内随机抽取了部分学生进行问卷调查将他们的得分按优秀、良好、合格、不合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图请根据图表信息,解答下列问题:本次调查随机抽取了_ 名学生:表中 ; 补全条形统计图:若全校有名学生,请你估计该校掌握垃圾分类知识达到“优秀和“良好”等级的学生共有多少人25(10分)在中,以点为圆心、为半径作圆,设点为上一点,线段绕着点顺时针旋转,得到线段,连接、(1)在图中,补全图形,并证明 .(2)连接,若与相切,则的度数为 .(3)连接,则的最小值为 ;的最大值为 .26(10分)如图,AB是O的直径,弦DE垂直半径OA,C为垂足,DE6,连接DB,过
8、点E作EMBD,交BA的延长线于点M(1)求的半径;(2)求证:EM是O的切线;(3)若弦DF与直径AB相交于点P,当APD45时,求图中阴影部分的面积参考答案一、选择题(每小题3分,共30分)1、B【分析】根据全等三角形的判定(ASA)即可得到正确;根据相似三角形的判定可得正确;根据全等三角形的性质可得正确;根据相似三角形的性质和判定、勾股定理,即可得到答案.【详解】解:四边形是正方形,故正确;,点四点共圆,故正确;, ,故正确;,又,是等腰直角三角形,又中,故错误,故选【点睛】本题考查全等三角形的判定(ASA)和性质、相似三角形的性质和判定、勾股定理,解题的关键是掌握全等三角形的判定(AS
9、A)和性质、相似三角形的性质和判定.2、C【分析】根据一元二次方程的定义依次判断后即可解答.【详解】选项A,是一元一次方程,不是一元二次方程;选项B,是二元二次方程,不是一元二次方程;选项C,是一元二次方程; 选项D, 是分式方程,不是一元二次方程.故选C.【点睛】本题考查了一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程是解决问题的关键.3、A【分析】利用直接开平方法进行求解即可得答案.【详解】,x-1=0,x1=x2=1,故选A.【点睛】本题考查解一元二次方程,根据方程的特点选择恰当的方法是解题的关键4、A【分析】主视图、左视图、俯视图是分别从正面
10、、左侧面、上面看,得到的图形,根据要求判断每个立体图形对应视图是否不同即可【详解】解:A圆的主视图是矩形,左视图是圆,故两个视图不同,正确B正方体的主视图与左视图都是正方形,错误C圆锥的主视图和俯视图都是等腰三角形,错误D球的主视图与左视图都是圆,错误故选:A【点睛】简单几何体的三视图,此类型题主要看清题目要求,判断的是哪种视图即可5、C【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方【详解】解:由原方程移项,得x22x5,方程的两边同时加上一次项系数2的一半的平方1,得x22x+11(x1)21故选:C【点睛】此题
11、考查利用配方法将一元二次方程变形,熟练掌握配方法的一般步骤是解题的关键.6、B【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可【详解】解:抛物线y=-x1的顶点坐标为(0,0),先向左平移1个单位再向下平移1个单位后的抛物线的顶点坐标为(-1,-1),所以,平移后的抛物线的解析式为y=-(x+1)1-1故选:B【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减并用根据规律利用点的变化确定函数解析式7、D【分析】把方程两边都加上4,然后把方程左边写成完全平方形式即可【详解】,故选:D【点睛】本题考查了配方法解一元二次方程,解题时要注意解题
12、步骤的正确应用把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方得出即可8、D【分析】利用轴对称图形以及中心对称图形的性质即可解答【详解】如图所示:黑(3,1),白(3,3)故选D【点睛】此题主要考查了旋转变换以及轴对称变换,正确把握图形的性质是解题关键9、B【分析】根据反比例函数的性质解答即可【详解】双曲线的图象的一支位于第三象限,k10,k1故选B【点睛】本题考查了反比例函数的图象与性质,反比例函数y(k0),当k0时,图象在第一、三象限,且在每一个象限y随x的增大而减小;当k0时,函数图象在第二、四象限,且在每一个象限y随x的增大而增大,熟练掌握反比例函数
13、的性质是解答本题的关键10、D【分析】求出各选项中M、N两点的坐标,再求面积S,进行判断即可;【详解】A选项中,M点坐标为(1,1),N点坐标为(0,-2),故A选项不满足;B选项中,M点坐标为,N点坐标为(0,),故B选项不满足;C选项中,M点坐标为(2,),点N坐标为(0,1),故选项C不满足;D选项中,M点坐标为(,),点N坐标为(0,2),当a=1时,S=1,故选项D满足;【点睛】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.二、填空题(每小题3分,共24分)11、70【分析】连接OA、OB,根据圆周角定理求得AOB,由切线的性质求出OAP=OBP=90,再由四边形的内
14、角和等于360,即可得出答案【详解】解:连接OA、OB,ACB55,AOB=110PA、PB是O的两条切线,点A、B为切点,OAP=OBP=90APB+OAP+AOB+OBP=360APB=180-(OAP+AOB+OBP)=70故答案为:70【点睛】本题考查了切线的性质、四边形的内角和定理以及圆周角定理,利用切线性质和圆周角定理求出角的度数是解题的关键12、1【分析】根据三角形中位线定理得到AC=2DE=5,ACDE,根据勾股定理的逆定理得到ACB=90,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可【详解】D,E分别是AB,BC的中点,AC=2DE=5,ACDE,AC
15、2+BC2=52+122=169,AB2=132=169,AC2+BC2=AB2,ACB=90,ACDE,DEB=90,又E是BC的中点,直线DE是线段BC的垂直平分线,DC=BD,ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=1,故答案为1【点睛】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键13、【分析】作FHx轴,ECy轴,FH与EC交于D,先利用一次函数图像上的点的坐标特征得到A点(2,0),B点(0,2),易得AOB为等腰直角三角形,则AB2,所以,EFAB,且DEF为等腰直角三角形,则FDD
16、EEF1,设F点坐标是:(t,t+2),E点坐标为(t+1,t+1),根据反比例函数图象上的点的坐标特征得到t(t+2)(t+1)(t+1),解得t,则E点坐标为(,),继而可求得k的值【详解】如图,作FHx轴,ECy轴,FH与EC交于D,由直线yx+2可知A点坐标为(2,0),B点坐标为(0,2),OAOB2,AOB为等腰直角三角形,AB2,EFAB,DEF为等腰直角三角形,FDDEEF1,设F点横坐标为t,代入yx+2,则纵坐标是t+2,则F的坐标是:(t,t+2),E点坐标为(t+1,t+1),t(t+2)(t+1)(t+1),解得t,E点坐标为(,),k故答案为【点睛】本题考查反比例函
17、数图象上的点的坐标特征,解题的关键是掌握反比例函数(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xyk14、10【分析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解【详解】如图,设圆心为O,弦为AB,切点为C如图所示则AB8cm,CD2cm连接OC,交AB于D点连接OA尺的对边平行,光盘与外边缘相切,OCABAD4cm设半径为Rcm,则R242(R2)2,解得R5,该光盘的直径是10cm故答案为:10.【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键15、m(4m+n)(4mn)【解析】试题分
18、析:原式=m(4m+n)(4mn)故答案为m(4m+n)(4mn)考点:提公因式法与公式法的综合运用16、【分析】在直角三角形中,角的正切值等于其对边与邻边的比值,据此求解即可.【详解】在RtABC中,A=,AC=20,=,即BC=.故答案为:.【点睛】本题主要考查了三角函数解直角三角形,熟练掌握相关概念是解题关键.17、2【分析】先连接OC,在RtODC中,根据勾股定理得出OC的长,即可求得答案【详解】连接OC,如图,CD=4,OD=3,在RtODC中,故答案为:【点睛】此题考查了圆的认识,根据题意作出辅助线,构造出直角三角形是解答此题的关键18、【分析】根据一元二次方程的定义ax2+bx+
19、c=0(a0),列含m的不等式求解即可.【详解】解:关于x的方程(m2)x22x+10是一元二次方程,m-20,m2.故答案为:m2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.三、解答题(共66分)19、(1)证明见解析;(2)BP=1.【解析】分析:(1)连接OB,如图,根据圆周角定理得到ABD=90,再根据切线的性质得到OBC=90,然后利用等量代换进行证明;(2)证明AOPABD,然后利用相似比求BP的长详(1)证明:连接OB,如图,AD是O的直径,ABD=90,A+ADB=90,BC为切线,OBBC,OBC=90,OBA+CBP=90,而OA=OB,A
20、=OBA,CBP=ADB;(2)解:OPAD,POA=90,P+A=90,P=D,AOPABD,即,BP=1点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系也考查了圆周角定理和相似三角形的判定与性质20、(1);(2)见解析,【分析】(1)直接根据概率公式解答即可;(2)首先根据题意列出表格,然后列表法求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案【详解】解:(1)从3个球中随机摸出一个,摸到标有数字是奇数的球的概率是;(2)列表如下:第1次 第2次1231(1,1)(1,2)(1,3)2(2,
21、1)(2,2)(2,3)3(3,1)(3,2)(3,3)根据表格可知共有9中情况,其中两次都是奇数的是4种,则概率是=【点睛】本题考查了概率,根据概率的求法,找准两点:全部等可能情况的总数;符合条件的情况数目;二者的比值就是其发生的概率21、(1)见详解;(2)见详解;120【分析】教材呈现:证明ADEABC即可解决问题结论应用:(1)首先证明ADE是等边三角形,推出ADAE,BDCE,再利用三角形的中位线定理即可证明(2)利用三角形的中位线定理以及平行线的性质解决问题即可【详解】教材呈现:证明:点D,E分别是AB,AC的中点,AA,ADEABC,ADEABC,DEBC,DEBC结论应用:(1
22、)证明:ABC是等边三角形,ABAC,ABCACB60,DEAB,ABCADE60,ACBAED60,ADEAED60,ADE是等边三角形,ADAE,BDCE,EMMD,ENNB,MNBD,BNNE,BPPC,PNEC,NMNP(2)EMMD,ENNB,MNBD,BNNE,BPPC,PNEC,MNEABE,PNEAEB,AEBEBC+C,ABCC60,MNPABE+EBC+CABC+C120【点睛】本题考查了三角形中位线定理,平行线的性质、相似三角形的判定与性质,综合性较强,难度适中熟练掌握各定理是解题的关键22、(1)2;(2)见解析;存在由得DMNDGM,理由见解析【分析】(1)根据矩形的
23、性质和折叠的性质得出AD=AF、DE=EF,进而设ECx,则DEEF8x,利用勾股定理求解即可得出答案;(2)根据平行线的性质得出DAECGE求得CG6,进而根据勾股定理求出DG=1,得出AD=DG,即可得出答案;假设存在,由可得当DGM是等腰三角形时DMN是等腰三角形,分两种情况进行讨论:当MGDG=1时,结合勾股定理进行求解;当MGDM时,作MHDG于H,证出GHMGBA,即可得出答案.【详解】解:(1)如图1中,四边形ABCD是矩形,ADBC1,ABCD8,BBCD =D90,由翻折可知:ADAF1DEEF,设ECx,则DEEF8x在RtABF中,BF6,CFBCBF164,在RtEFC
24、中,则有:(8x)2x2+42,x2,EC2(2)如图2中,ADCG,DAE=CGE,ADE=GCEDAECGE,CG6,在RtDCG中,AD=DGDAGAGD,DMNDAMDMNDGM MDN=GDMDMNDGM 存在由得DMNDGM当DGM是等腰三角形时DMN是等腰三角形有两种情形:如图21中,当MGDG=1时,BGBC+CG16,在RtABG中,AMAG - MG = 如图22中,当MGDM时,作MHDG于HDHGH5,由得DGM =DAG=AGBMHG =BGHMGBA,综上所述,AM的长为或 【点睛】本题考查的是矩形综合,难度偏高,需要熟练掌握矩形的性质、勾股定理和相似三角形等相关性
25、质.23、(1);(2)见解析;(3)4【分析】(1)由于三角形的外心是三边垂直平分线的交点,故只要利用网格特点作出AB与AC的垂直平分线,其交点即为圆心M;(2)根据位似图形的性质画图即可;由位似图形的性质即可求得点D坐标;(3)利用(2)题的图形,根据三角形的面积公式求解即可.【详解】解:(1)如图1,点M是AB与AC的垂直平分线的交点,即为ABC的外接圆圆心,其坐标是(2,2);故答案为:(2,2);(2)如图2所示;点坐标为(4,6);故答案为:(4,6);(3)的面积=个平方单位.故答案为:4.【点睛】本题考查了三角形外心的性质、坐标系中位似图形的作图和三角形的面积等知识,属于常考题型,熟练掌握基本知识是解题关键.24、(1)50,20,0.12;(2)详见解析;(3)1【分析】(1)根据总数频率=频数,即可得到答案;(2)根据统计表的数据,即可画出条形统计图;(3)根据全校总人数达到“优秀和“良好”等级的学生的百分比,即可得到答案【详解】本次调查随机抽取了名学生,故答案为:;补全条形统计图如图所示:(人),答:该校掌握垃圾分类知识达到“优秀和“良好”等级的学生共有1多少人【点睛】本题主要考查频数统计表和条形统计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 应城市七年级上学期语文期中试题
- 四年级数学(四则混合运算)计算题专项练习与答案汇编
- 分数的初步认识的说课稿
- 蹲踞式跳远说课稿初中
- 南京工业大学浦江学院《汽车构造(下)》2023-2024学年第一学期期末试卷
- 《相交线》初中数学说课稿
- 南京工业大学浦江学院《房屋建筑学》2021-2022学年第一学期期末试卷
- 约定工资结清协议书(2篇)
- 南京工业大学《岩体力学与工程》2023-2024学年第一学期期末试卷
- 对课件分析教学课件
- (完整版)四宫格数独题目204道(可直接打印)及空表(一年级数独题练习)
- JIT、QR与供应链管理课件
- 车辆采购服务投标方案(完整技术标)
- 《大学生军事理论教程》第四章
- 光伏发电项目达标投产实施细则之欧阳科创编
- 第届世界旅游小姐大赛中国云南总决赛招商赞助方案
- 爱立信网管BO操作流程
- 大学生计算与信息化素养-北京林业大学中国大学mooc课后章节答案期末考试题库2023年
- 第四代篦冷机液压系统的故障与维护获奖科研报告
- 人大代表为人民
- 文明之痕:流行病与公共卫生知到章节答案智慧树2023年四川大学
评论
0/150
提交评论