2023学年安徽省颍上三中学九年级数学第一学期期末教学质量检测试题含解析_第1页
2023学年安徽省颍上三中学九年级数学第一学期期末教学质量检测试题含解析_第2页
2023学年安徽省颍上三中学九年级数学第一学期期末教学质量检测试题含解析_第3页
2023学年安徽省颍上三中学九年级数学第一学期期末教学质量检测试题含解析_第4页
2023学年安徽省颍上三中学九年级数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1一个直角三角形的两直角边分别为x,y,其面积为1,则y与x之间的关系用图象表示为( )ABCD2 “泱泱华夏,浩浩千秋于以求之?旸谷之东山其何辉,韫卞和之美玉”这是武

2、汉16岁女孩陈天羽用文言文写70周年阅兵的观后感小汀州同学把这篇气势磅礴、文采飞扬的文章放到自己的微博上,并决定用微博转发的方式传播他设计了如下的传播规则:将文章发表在自己的微博上,再邀请n个好友转发,每个好友转发之后,又邀请n个互不相同的好友转发,依此类推已知经过两轮转发后,共有111个人参与了宣传活动,则n的值为()A9B10C11D123一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机模出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有80次摸到红球,则口袋中红球的个数大约有( )A8个B7个C3个D2个4如图,正方形AB

3、CD的边长是4,DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值()A2B4C2D45某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃C袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D掷一个质地均匀的正六面体骰子,向上的面点数是偶数6抛物线向左平移1个单位,再向下平移1个单位后的抛物线解析式是()ABCD73的倒数是( )ABCD8如图,已知与位似,位似

4、中心为点且的面积与面积之比为,则的值为( )ABCD9一元二次方程x(x1)=0的解是( )Ax=0Bx=1Cx=0或x=1Dx=0或x=110某班有40人,一次体能测试后,老师对测试成绩进行了统计由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s21后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )A平均分不变,方差变大B平均分不变,方差变小C平均分和方差都不变D平均分和方差都改变11下列说法正确的是()A任意掷一枚质地均匀的硬币10次,一定有5次正面向上B通过抛掷一枚均匀的硬币确定谁先发球的比赛规则是不公平的C“367人中至少有2人生日相

5、同”是必然事件D四张分别画有等边三角形、平行四边形、菱形、圆的卡片,从中随机抽取一张,恰好抽到中心对称图形的概率是12李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是( )ABCD二、填空题(每题4分,共24分)13抛物线的顶点坐标是_14在RtABC中,ACB90,若tanA3,AB,则BC_15如图,在平面直角坐标系中,矩形的两边在其坐标轴上,以轴上的某一点为位似中心作矩形,使它与矩形位似,且点,的坐标分别为,则点的坐标为_16x台拖拉机,每天工作x小时,x天耕地x亩,则y台拖拉机,每天工作y小时,y天耕_亩17在平面直角坐标系xOy中

6、,过点P(0,2)作直线l:y=x+b(b为常数且b2)的垂线,垂足为点Q,则tanOPQ=_18二次函数y4(x3)2+7的图象的顶点坐标是_三、解答题(共78分)19(8分)在一个不透明的布袋中,有个红球,个白球,这些球除颜色外都相同(1)搅匀后从中任意摸出个球,摸到红球的概率是_;(2)搅匀后先从中任意摸出个球(不放回),再从余下的球中任意摸出个球求两次都摸到红球的概率(用树状图或表格列出所有等可能出现的结果)20(8分)先化简,再求值:,其中x=sin45,y=cos6021(8分)关于x的方程x24x2m+20有实数根,且m为正整数,求m的值及此时方程的根22(10分)已知,如图,在

7、矩形ABCD中,对角线AC与BD相交于点O,过点C作BD的平行线,过点D作AC的平行线,两线交于点P求证:四边形CODP是菱形若AD6,AC10,求四边形CODP的面积23(10分)(1)如图,AB为O的直径,点P在O上,过点P作PQAB,垂足为点Q说明APQABP;(2)如图,O的半径为7,点P在O上,点Q在O内,且PQ4,过点Q作PQ的垂线交O于点A、B设PAx,PBy,求y与x的函数表达式24(10分)如图,已知直线的函数表达式为,它与轴、轴的交点分别为两点(1)若的半径为2,说明直线与的位置关系;(2)若的半径为2,经过点且与轴相切于点,求圆心的坐标;(3)若的内切圆圆心是点,外接圆圆

8、心是点,请直接写出的长度25(12分)某地震救援队探测出某建筑物废墟下方点 C 处有生命迹象,已知废墟一侧地面上两探测点A、B 相距 3 米,探测线与地面的夹角分别是30和 60(如图),试确定生命所在点 C 的深度(结果精确到0.1米,参考数据:)26已知二次函数的图像与轴交于点,与轴的一个交点坐标是(1)求二次函数的解析式;(2)当为何值时,参考答案一、选择题(每题4分,共48分)1、C【解析】试题分析:根据题意有:xy=2;故y与x之间的函数图象为反比例函数,且根据x y实际意义x、y应大于0,其图象在第一象限,即可判断得出答案解:xy=1y=(x0,y0)故选C考点:反比例函数的应用;

9、反比例函数的图象2、B【分析】根据传播规则结合经过两轮转发后共有111个人参与了宣传活动,即可得出关于n的一元二次方程,解之取其正值即可得出结论【详解】解:依题意,得:1+n+n2111,解得:n110,n211(不合题意,舍去)故选:B【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键3、A【分析】根据利用频率估计概率可估计摸到红球的概率,即可求出红球的个数【详解】解:共摸了100次球,发现有80次摸到红球,摸到红球的概率估计为0.80,口袋中红球的个数大约100.80=8(个),故选:A【点睛】本题考查了利用频率估计概率的知识,属于常考题型,掌握计算的方法

10、是关键4、C【分析】过D作AE的垂线交AE于F,交AC于D,再过D作APAD,由角平分线的性质可得出D是D关于AE的对称点,进而可知DP即为DQ+PQ的最小值【详解】作D关于AE的对称点D,再过D作DPAD于P,DDAE,AFD=AFD,AF=AF,DAE=CAE,DAFDAF,D是D关于AE的对称点,AD=AD=4,DP即为DQ+PQ的最小值,四边形ABCD是正方形,DAD=45,AP=PD,在RtAPD中,PD2+AP2=AD2,AD2=16,AP=PD,2PD2=AD2,即2PD2=16,PD=22,即DQ+PQ的最小值为22,故答案为C【点睛】本题考查了正方形的性质以及角平分线的性质和

11、全等三角形的判定和性质和轴对称-最短路线问题,根据题意作出辅助线是解答此题的5、D【解析】根据图可知该事件的概率在0.5左右,在一一筛选选项即可解答.【详解】根据图可知该事件的概率在0.5左右,(1)A事件概率为,错误.(2)B事件的概率为,错误.(3)C事件概率为,错误.(4)D事件的概率为,正确.故选D.【点睛】本题考查概率,能够根据事件的条件得出该事件的概率是解答本题的关键.6、B【分析】根据向左平移横坐标减,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】解:由“左加右减、上加下减”的原则可知,把抛物线向左平移1个单位,再向下平移1个单位,则平移后的

12、抛物线的表达式为y.故选B.【点睛】本题主要考查了二次函数图象与几何变换,掌握二次函数图象与几何变换是解题的关键.7、C【解析】根据倒数的定义可知解:3的倒数是主要考查倒数的定义,要求熟练掌握需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数8、A【分析】根据位似图形的性质得到AC:DF=3:1,ACDF,再证明,根据相似的性质进而得出答案【详解】与位似,且的面积与面积之比为9:4,AC:DF=3:1,ACDF,ACO=DFO,CAO=FDO,AO:OD=AC:DF=3:1故选:A【点睛】本题考查位似图形的性质,及

13、相似三角形的判定与性质,注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方9、D【解析】试题分析:方程利用两数相乘积为0,两因式中至少有一个为0,因此可由方程x(x1)=0,可得x=0或x1=0,解得:x=0或x=1故选D考点:解一元二次方程-因式分解法10、B【分析】根据平均数、方差的定义计算即可.【详解】小亮的成绩和其它39人的平均数相同,都是90分,40人的平均数是90分,39人的方差为1,小亮的成绩是90分,40人的平均分是90分,40人的方差为139+(90-90)2401,方差变小,平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义

14、是解题关键.11、C【分析】利用随机事件和必然事件的定义对A、C进行判断;利用比较两事件的概率的大小判断游戏的公平性对B进行判断;利用中心对称的性质和概率公式对D进行判断【详解】A、任意掷一枚质地均匀的硬币10次,可能有5次正面向上,所以A选项错误;B、通过抛掷一枚均匀的硬币确定谁先发球的比赛规则是公平的,所以B选项错误;C、“367人中至少有2人生日相同”是必然事件,所以C选项正确;D、四张分别画有等边三角形、平行四边形、菱形、圆的卡片,从中随机抽取一张,恰好抽到中心对称图形的概率是,所以D选项错误故选:C【点睛】本题考查了随机事件以及概率公式和游戏公平性:判断游戏公平性需要先计算每个事件的

15、概率,然后比较概率的大小,概率相等就公平,否则就不公平12、B【分析】根据相似三角形的判定定理,即可得到答案【详解】DEBC,B=ADE,DFAC,A=BDF,ADEDBF故选:B【点睛】本题主要考查三角形相似的判定定理,掌握“有两个角对应相等的两个三角形相似”是解题的关键二、填空题(每题4分,共24分)13、(2,0) 【分析】直接利用顶点式可知顶点坐标【详解】顶点坐标是(2,0),故答案为:(2,0)【点睛】主要考查了求抛物线顶点坐标的方法14、1【分析】由tanA1可设BC1x,则ACx,依据勾股定理列方程求解可得【详解】在RtABC中,tanA1,设BC1x,则ACx,由BC2+AC2

16、AB2可得9x2+x210,解得:x1(负值舍去),则BC1,故答案为:1【点睛】本题考查了解直角三角形的问题,掌握锐角三角函数的定义以及勾股定理是解题的关键15、【分析】首先求出位似图形的位似中心坐标,然后即可得出点D的坐标.【详解】连接BF交轴于P,如图所示:矩形和矩形,点,的坐标分别为,点C的坐标为BCGFGP=1,PC=2,OP=3点P即为其位似中心OD=6点D坐标为故答案为:.【点睛】此题主要考查位似图形的性质,熟练掌握,即可解题.16、【分析】先求出一台拖拉机1小时的工作效率,然后求y台拖拉机在y天,每天工作y小时的工作量【详解】一台拖拉机1小时的工作效率为:y台拖拉机,y天,每天

17、y小时的工作量=故答案为:【点睛】本题考查工程问题,解题关键是求解出一台拖拉机1小时的工作效率17、【解析】试题分析:如图,设直线l与坐标轴的交点分别为A、B,AOB=PQB=90,ABO=PBQ,OAB=OPQ,由直线的斜率可知:tanOAB=,tanOPQ=;故答案为考点:1一次函数图象上点的坐标特征;2解直角三角形18、(3,7)【分析】由抛物线解析式可求得答案【详解】y=4(x3)2+7,顶点坐标为(3,7),故答案为(3,7)三、解答题(共78分)19、(1);(2)见解析,.【分析】(1)根据古典概型概率的求法,求摸到红球的概率.(2)利用树状图法列出两次摸球的所有可能的结果,求两

18、次都摸到红球的概率【详解】(1)一般地,如果在一次试验中,有种可能的结果,并且它们发生的可能性都相等,事件包含其中的种结果,那么事件发生的概率为,则摸到红球的概率为.(2)两次摸球的所有可能的结果如下:有树状图可知,共有种等可能的结果,两次都摸出红球有种情况,故(两次都摸处红球)【点睛】本题考查古典概型概率的求法和树状图法求概率的方法.20、【分析】利用分式的乘法和除法进行化简,再把x、y的值代入计算,即可得到答案.【详解】解:原式 当x=sin45=,y=cos60=时,原式【点睛】本题考查了特殊角的三角函数值,分式的化简求值,以及分式的混合运算,解题的关键是正确的进行化简,掌握特殊角的三角

19、函数值.21、m=1,【分析】直接利用根的判别式得出m的取值范围,再由m为正整数进而求出m的值,然后再将m代入方程中解方程得出答案【详解】解:关于x的方程x24x2m+20有实数根解得又为正整数将代回方程中,得到x24x40即求得方程的实数根为:.故答案为:,方程的实数根为:【点睛】此题主要考查了根的判别式,当时方程有两个不相等的实数根;当时方程有两个相等的实数根;时方程无实数根.22、证明见解析;(2)S菱形CODP24.【解析】 根据DPAC,CPBD,即可证出四边形CODP是平行四边形,由矩形的性质得出OC=OD,即可得出结论; 利用SCOD12S菱形CODP,先求出SCOD,即可得【详

20、解】证明:DPAC,CPBD四边形CODP是平行四边形,四边形ABCD是矩形,BDAC,OD12BD,OC12ODOC,四边形CODP是菱形AD6,AC10DCAC2AOCO,SCOD12SADC1212四边形CODP是菱形,SCOD12S菱形CODP12S菱形CODP24【点睛】本题考查了矩形性质和菱形的判定,解题关键是熟练掌握菱形的判定方法,由矩形的性质得出OC=OD23、(1)见解析;(2)【分析】(1)根据圆周角定理可证APB90,再根据相似三角形的判定方法:两角对应相等,两个三角形相似即可求证结论;(2)连接PO,并延长PO交O于点C,连接AC,根据圆周角定理可得PAC90,CB,求

21、得PACPQB,根据相似三角形的性质即可得到结论【详解】(1)如图所示:AB为O的直径APB90又PQABAQP90AQPAPB又PAQBAPAPQABP(2)如图,连接PO,并延长PO交O于点C,连接ACPC为O的直径PAC90又PQABPQB90PACPQB又CB(同弧所对的圆周角相等)PACPQB又O的半径为7,即PC14,且PQ4,PAx,PBy【点睛】本题考查相似三角形的判定及其性质,圆周角定理及其推论,解题的关键是综合运用所学知识24、(1)直线AB与O的位置关系是相离;(2)(,2)或(-,2);(3)【分析】(1)由直线解析式求出A(-4,0),B(0,3),得出OB=3,OA

22、=4,由勾股定理得出AB=5,过点O作OCAB于C,由三角函数定义求出OC=2,即可得出结论;(2)分两种情况:当点P在第一象限,连接PB、PF,作PCOB于C,则四边形OCPF是矩形,得出OC=PF=BP=2,BC=OB-OC=1,由勾股定理得出PC=,即可得出答案;当点P在的第二象限,根据对称性可得出此时点P的坐标;(3)设M分别与OA、OB、AB相切于C、D、E,连接MC、MD、ME、BM,则四边形OCMD是正方形,DEAB,BE=BD,得出MC=MD=ME=OD=(OA+OB-AB)=1,求出BE=BD=OB-OD=2,由直角三角形的性质得出ABO外接圆圆心N在AB上,得出AN=BN=AB=,NE=BN-BE=,在RtMEN中,由勾股定理即可得出答案【详解】解:(1)直线l的函数表达式为y=x+3, 当x=0时,y=3;当y=0时,x=4;A(4,0),B(0,3), OB=3,OA=4,AB=5, 过点O作OCAB于C,如图1所示:sinBAO=,OC=2, 直线AB与O的位置关系是相离;(2)如图2所示,分两种情况:当点P在第一象限时,连接PB、PF,作PCOB于C,则四边形OCPF是矩形,OC=PF=BP=2, BC=OBOC=32=1,PC=, 圆心P的坐标为:(,2); 当点P在第二象限时,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论