山东省青岛市42中学2023学年九年级数学第一学期期末预测试题含解析_第1页
山东省青岛市42中学2023学年九年级数学第一学期期末预测试题含解析_第2页
山东省青岛市42中学2023学年九年级数学第一学期期末预测试题含解析_第3页
山东省青岛市42中学2023学年九年级数学第一学期期末预测试题含解析_第4页
山东省青岛市42中学2023学年九年级数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每题4分,共48分)1如图,O 中,弦 AB、CD 相交于点 P,A40,APD75,则B 的度数是( )A15B40C75D352在RtABC中,C=90,sinA=,则A的度数是( )A30B45C60D903已知是方程的一个根,则方程的另一个根为( )A-2B2C-3D34如图,ABOB,AB=2,OB=4,把ABO绕点O顺时针

2、旋转60得CDO,则AB扫过的面积(图中阴影部分)为()A2B2CD5等于( )AB2C3D6抛物线的项点坐标是( )ABCD7如图,面积为的矩形在第二象限,与轴平行,反比例函数经过两点,直线所在直线与轴、轴交于两点,且为线段的三等分点,则的值为( )ABCD8由几个相同的小正方体搭成的一个几何体如图所示,从正面看这个几何体得到的平面图形是( )ABCD9已知函数的图象如图所示,则一元二次方程根的存在情况是A没有实数根B有两个相等的实数根C有两个不相等的实数根D无法确定10二次函数图象上部分点的坐标对应值列表如下:则该函数图象的对称轴是( )-3-2-101-17-17-15-11-5ABCD

3、11在RtABC中,C=90,AB=5,BC=3,则tanA的值是( )ABCD12如图,在中,是线段上的两个动点,且,过点,分别作,的垂线相交于点,垂足分别为,.有以下结论:;当点与点重合时,;.其中正确的结论有( )A1个B2个C3个D4个二、填空题(每题4分,共24分)13分解因式:x3-4x14在平面直角坐标系xOy中,点O的坐标为O,OABC的顶点A在反比例函数的图象上,顶点B在反比例函数的图象上,点C在x轴正半轴上,则OABC的面积是_15如图,点是矩形中边上一点,将沿折叠为,点落在边上,若,则_16某商品连续两次降低10%后的价格为a元,则该商品的原价为_17如图,是的直径,点和

4、点是上位于直径两侧的点,连结,若的半径是,则的值是_18布袋里有三个红球和两个白球,它们除了颜色外其他都相同,从布袋里摸出两个球,摸到两个红球的概率是_三、解答题(共78分)19(8分)如图,在中, ,以为直径作交于于于求证:是中点;求证:是的切线20(8分)如图,四边形是平行四边形,分别是的平分线,且与对角线分别相交于点.(1)求证:;(2)连结,判断四边形是否是平行四边形,说明理由.21(8分)小明按照列表、描点、连线的过程画二次函数的图象,下表与下图是他所完成的部分表格与图象,求该二次函数的解析式,并补全表格与图象22(10分)如图,已知反比例函数与一次函数的图象相交于点A、点D,且点A

5、的横坐标为1,点D的纵坐标为1,过点A作ABx轴于点B,AOB的面积为1(1)求反比例函数和一次函数的解析式;(2)若一次函数y=ax+b的图像与x轴交于点C,求ACO的度数(3)结合图像直接写出,当时,x的取值范围23(10分)如图1,将三角板放在正方形上,使三角板的直角顶点与正方形的顶点重合,三角板的一边交于点,另一边交的延长线于点(1)求证:;(2)如图2,将三角板绕点旋转,当时,连接交于点求证:;(3)如图3,将“正方形”改为“矩形”,且将三角板的直角顶点放于对角线(不与端点重合)上,使三角板的一边经过点,另一边交于点,若,求的值24(10分)如图,抛物线y=x2+bx+c与直线y=x

6、+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(3,0)(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MBMD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQPA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由25(12分)已知关于的一元二次方程(1)请判断是否可为此方程的根,说明理由(2)是否存在实数,使得成立?若存在,请求出的值;若不存在,请说明理由26(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛

7、成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“”表示被污损的数据)请解答下列问题:成绩分组频数频率50 x6080.1660 x7012a70 x800.580 x9030.0690 x100bc合计1(1)写出a,b,c的值;(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率参考答案一、选择题(每题4分,共48分)1、D【分析】由,可知的度数,由圆

8、周角定理可知,故能求出B .【详解】,由圆周角定理可知(同弧所对的圆周角相等),在三角形BDP中,所以D选项是正确的.【点睛】本题主要考查圆周角定理的知识点,还考查了三角形内角和为的知识点,基础题不是很难.2、C【解析】试题分析:根据特殊角的三角函数值可得:A=603、B【分析】根据一元二次方程根与系数的关系求解【详解】设另一根为m,则1m=1,解得m=1故选B【点睛】考查了一元二次方程根与系数的关系根与系数的关系为:x1+x1=-,x1x1= 要求熟练运用此公式解题4、C【解析】根据勾股定理得到OA,然后根据边AB扫过的面积=解答即可得到结论【详解】如图,连接OA、OCABOB,AB=2,O

9、B=4,OA=,边AB扫过的面积= =故选C【点睛】本题考查了扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解题的关键5、A【分析】先计算60度角的正弦值,再计算加减即可.【详解】故选A.【点睛】本题考查了特殊角的三角函数值的计算,能够熟练掌握特殊角的三角函数值是解题的关键.6、D【分析】由二次函数顶点式:,得出顶点坐标为,根据这个知识点即可得出此二次函数的顶点坐标【详解】解:由题知:抛物线的顶点坐标为:故选:D【点睛】本题主要考查的二次函数的顶点式的特点以及顶点坐标的求法,掌握二次函数的顶点式是解题的关键7、C【分析】延长AB交x轴于点G,延长BC交y轴于点H,根据矩形面积求出的面积,

10、通过平行可证明,然后利用相似的性质及三等分点可求出、的面积,再求出四边形BGOH的面积,然后通过反比例函数比例系数的几何意义求出k值,再利用的面积求出b值即可【详解】延长AB交x轴于点G,延长BC交y轴于点H,如图:矩形ABCD的面积为1,B、D为线段EF的三等分点,即,即,即,四边形ABCD是矩形,又,四边形BGOH是矩形,根据反比例函数的比例系数的几何意义可知:,又,即,直线EF的解析式为,令,得,令,即,解得,F点在轴的上方,即,故选:C【点睛】本题考查了相似三角形的判定与性质,反比例函数比例系数的几何意义,一次函数与面积的结合,综合性较强,需熟练掌握各性质定理及做题技巧8、A【解析】根

11、据题意,由题目的结构特点,依据题目的已知条件,正视图是有两行,第一行两个,第二行三个且右对齐,从而得出答案.即可得到题目的结论.【详解】从正面看到的平面图形是:,故选A.【点睛】此题主要考查的是简单的组合体的三视图等有关知识,题目比较简单,通过考查,了解学生对简单的组合体的三视图等知识的掌握程度.熟练掌握简单的组合体的三视图是解决本题的关键.9、C【详解】试题分析:一次函数的图象有四种情况:当,时,函数的图象经过第一、二、三象限;当,时,函数的图象经过第一、三、四象限;当,时,函数的图象经过第一、二、四象限;当,时,函数的图象经过第二、三、四象限.由图象可知,函数的图象经过第二、三、四象限,所

12、以,.根据一元二次方程根的判别式,方程根的判别式为,当时,方程有两个不相等的实数根故选C.10、B【分析】当和时,函数值相等,所以对称轴为【详解】解:根据题意得,当和时,函数值相等,所以二次函数图象的对称轴为直线 故选B【点睛】本题考查了二次函数的性质.11、A【解析】由勾股定理,得AC=,由正切函数的定义,得tanA=,故选A12、B【分析】利用勾股定理判定正确;利用三角形中位线可判定正确;中利用相似三角形的性质;中利用全等三角形以及勾股定理即可判定其错误.【详解】,故正确;当点与点重合时,CFAB,FGAC,FG为ABC的中位线GC=MH=,故正确;ABE不是三角形,故不可能,故错误;AC

13、=BC,ACB=90A=5=45将ACF顺时针旋转90至BCD,则CF=CD,1=4,A=6=45,BD=AF2=451+3=3+4=45DCE=2在ECF和ECD中,CF=CD,DCE=2,CE=CEECFECD(SAS)EF=DE5=45BDE=90,即故错误;故选:B.【点睛】此题主要考查等腰直角三角形、三角形中位线以及全等三角形的性质、勾股定理的运用,熟练掌握,即可解题.二、填空题(每题4分,共24分)13、x(x-2y)2【分析】首先提取公因式x,然后利用完全平方公式进行分解【详解】解: 原式=x(x24xy+4y2)故答案为:x(x-2y)2【点睛】本题考查因式分解,掌握完全平方公

14、式的结构是本题的解题关键14、3【分析】根据平行四边形的性质和反比例函数系数k的几何意义即可求得【详解】解:如图作BDx轴于D,延长BA交y轴于E,四边形OABC是平行四边形,ABOC,OA=BC,BEy轴,OE=BD,RtAOERtCBD(HL),根据系数k的几何意义,S矩形BDOE=5,SAOE=1 ,四边形OABC的面积=5-1-1=3,故选:C【点睛】本题考查了反比例函数的比例系数k的几何意义、平行四边形的性质等,有一定的综合性15、5【分析】由矩形的性质可得AB=CD=8,AD=BC=10,A=D=90,由折叠的性质可求BF=BC=10,EF=CE,由勾股定理可求AF的长,CE的长【

15、详解】解:四边形ABCD是矩形AB=CD=8,AD=BC=10,A=D=90,将BCE沿BE折叠为BFE,在RtABF中,AF=6DF=AD-AF=4在RtDEF中,DF2+DE2=EF2=CE2,16+(8-CE)2=CE2,CE=5故答案为:5【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,灵活运用这些性质进行推理是本题的关键16、元【分析】设商品原价为x元,则等量关系为原价=现价,根据等量关系列出方程即可求解【详解】设该商品的原价为x元,根据题意得解得故答案为元【点睛】本题考查了一元二次方程实际应用中的增长率问题,本剧题意列出方程是本题的关键17、【分析】根据题意可知ADB=90,A

16、CD=ABD,求出ABD的正弦就是ACD的正弦值【详解】解:是的直径,ADB=90ACD=ABD的半径是,故答案为:【点睛】本题考查的是锐角三角函数值.18、【解析】应用列表法,求出从布袋里摸出两个球,摸到两个红球的概率是多少即可【详解】解:红1红2红3白1白2红1-红1红2红1红3红1白1红1白2红2红2红1-红2红3红2白1红2白2红3红3红1红3红2-红3白1红3白2白1白1红1白1红2白1红3-白1白2白2白2红1白2红2白2红3白2白1-从布袋里摸出两个球的方法一共有20种,摸到两个红球的方法有6种,摸到两个红球的概率是故答案为:【点睛】此题主要考查了列表法与树状图法,要熟练掌握,解

17、答此题的关键是要明确:列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率三、解答题(共78分)19、(1)详见解析,(2)详见解析【分析】(1)连接AD,利用等腰三角形三线合一即可证明是中点;(2)连接OD,通过三角形中位线的性质得出 ,则有ODDE,则可证明结论【详解】(1)连接ADAB是O的直径,ADBC,ABAC,BDDC,(2)连接ODAOBO,BDDC, ,DEAC,ODDE,DE是O的切线【点睛】本题主要考查等腰三角形三线合一和切线的判定,掌握等腰三角形三线合一和切线的判定方法是解题的关键20、 (1)见解析;(2) 是平行四边形;理

18、由见解析.【分析】(1)根据角平分线的性质先得出BECDFA,然后再证ACBCAD,再证出ABECDF,从而得出AECF;(2)连接BD交AC于O,则可知OBOD,OAOC,又AECF,所以OEOF,然后依据对角线互相平分的四边形是平行四边形即可证明【详解】(1)证明:四边形是平行四边形,分别是的平分线, , (2)是平行四边形;连接交于,四边形是平行四边形,.即 四边形为平行四边形(对角线互相平分的四边形是平行四边形).【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,解答本题的关键寻找两条线段所在的三角形,然后证明两三角形全等21、,(4,1),(1,0)【详解】分析:利用待定系

19、数法、描点法即可解决问题;本题解析:设二次函数的解析式y=ax+bx+c把(-1,0)(0,1),(2,9)代得到 解得,二次数解析式y=-x +4x+1当x=4时,y=1,当y=0时,x=-1或1.22、(1),;(2)ACO=45;(3)01 ,2【分析】(1)由AOB的面积为1,点A的横坐标为1,求点A的纵坐标,确定反比例函数解析式,利用反比例函数解析式求D点坐标,利用“两点法”求一次函数解析式;(2)由一次函数解析式求C点坐标,再求AB、BC,在RtABC中,求tanACO的值,再求ACO的度数;(3)当y1y2时,y1的图象在y2的上面,由此求出x的取值范围【详解】解(1)如图:SA

20、OB=1,则 则反比例函数的解析式:A(1,2),D(2,1)设一次函数的解析式为,则,解得:.一次函数的解析式为:(2)由直线y=x+1可知,C(-1,0),则BC=OB+OC=2,AB=2,所以,在RtABC中,tanACO=1,故ACO=45;(3)由图象可知,当y1y2时,x-2或0 x1【点睛】此题考查反比例函数与一次函数的交点问题解题关键是由已知条件求交点坐标,根据交点坐标求反比例函数、一次函数的解析式,利用解析式,形数结合解答题目的问题23、(1)证明见解析;(2)证明见解析;(3)【分析】(1)根据旋转全等模型利用正方形的性质,由可证明,从而可得结论; (2)根据正方形性质可知

21、,结合已知可得;再由(1)可知是等腰直角三角形可得 ,从而证明 ,由相似三角形性质即可得出结论;(3)首先过点作,垂足为,交AD于M点,由有两角对应相等的三角形相似,证得,根据相似三角形的对应边成比例,再由平行可得,由此即可求得答案【详解】(1)证明:在正方形ABCD中,又,在和中,(ASA),;(2)证明 :四边形ABCD是正方形,又,由(1)可知,由(1)可知是等腰直角三角形,由(1)可知,(3)解:如图,过点作,垂足为,交AD于M点,四边形ABCD为矩形,四边形ABNM是矩形, ,又 ,又,又,【点睛】本题主要考查了相似三角形性质和判定;涉及了正方形,矩形的性质,以及全等三角形与相似三角

22、形的判定与性质此题综合性较强,注意旋转全等模型和一线三垂直模型的应用24、(1)抛物线的解析式是y=x2+x+3;(2)|MBMD|取最大值为;(3)存在点P(1,6)【分析】(1)根据待定系数法,可得函数解析式;(2)根据对称性,可得MC=MD,根据解方程组,可得B点坐标,根据两边之差小于第三边,可得B,C,M共线,根据勾股定理,可得答案;(3)根据等腰直角三角形的判定,可得BCE,ACO,根据相似三角形的判定与性质,可得关于x的方程,根据解方程,可得x,根据自变量与函数值的对应关系,可得答案【详解】解:(1)将A(0,3),C(3,0)代入函数解析式,得,解得,抛物线的解析式是y=x2+x

23、+3;(2)由抛物线的对称性可知,点D与点C关于对称轴对称,对l上任意一点有MD=MC,联立方程组 ,解得(不符合题意,舍),B(4,1),当点B,C,M共线时,|MBMD|取最大值,即为BC的长,过点B作BEx轴于点E,在RtBEC中,由勾股定理,得BC=,|MBMD|取最大值为;(3)存在点P使得以A,P,Q为顶点的三角形与ABC相似,在RtBEC中,BE=CE=1,BCE=45,在RtACO中,AO=CO=3,ACO=45,ACB=1804545=90,过点P作PGy轴于G点,PGA=90,设P点坐标为(x,x2+x+3)(x0)当PAQ=BAC时,PAQCAB,PGA=ACB=90,P

24、AQ=CAB,PGABCA,即,解得x1=1,x2=0(舍去),P点的纵坐标为12+1+3=6,P(1,6),当PAQ=ABC时,PAQCBA,PGA=ACB=90,PAQ=ABC,PGAACB,即=3,解得x1=(舍去),x2=0(舍去)此时无符合条件的点P,综上所述,存在点P(1,6)【点睛】本题考查了二次函数综合题,解(1)的关键是利用待定系数法求函数解析式;解(2)的关键是利用两边只差小于第三边得出M,B,C共线;解(3)的关键是利用相似三角形的判定与性质得出关于x的方程,要分类讨论,以防遗漏25、(1)不是此方程的根,理由见解析;(2)存在,或【分析】(1)将代入一元二次方程中,得到一个关于p的一元二次方程,然后用根的判别式验证关于p的一元二次方程是否存在实数根即可得出答案;(2)根据一元二

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论