版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题3分,共30分)1如图,l1l2l3,直线a,b与l1、l2、l3分别相交于A
2、、B、C和点D、E、F若,DE4.2,则DF的长是()AB6C6.3D10.52在反比例函数y图象的每一条曲线上,y都随x的增大而增大,则k的取值范围是()Ak2Bk0Ck2Dk23一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是( )ABCD4如图,在ABC中,DEBC,若,则的值为()ABCD5点A(-2,1)关于原点对称的点A的坐标是( )A(2,1)B(-2,-1)C(-1,2)D(2,-1)6如图,在ABC 中,点 D,E 分别在边 AB,AC 上,且,则 SADE:S四边形BCED 的值为( )A1:B1:3C1:8D1:97一元二次方程的一个根为,则的值为( )A
3、1B2C3D48二次函数的图象如图所示,则一次函数与反比例函数在同一平面直角坐标系中的大致图象为( )ABCD9若关于的方程有两个相等的实数根,则的值是( )A-1B-3C3D610已知,则下列结论一定正确的是( )ABCD二、填空题(每小题3分,共24分)11如图,直线交轴于点B,交轴于点C,以BC为边的正方形ABCD的顶点A(-1,a)在双曲线上,D点在双曲线上,则的值为_.12编号为2,3,4,5,6的乒乓球放在不透明的袋内,从中任抽一个球,抽中编号是偶数的概率是_13如图,D是ABC的边AC上的一点,连接BD,已知ABD=C,AB=6,AD=4,求线段CD的长14计算的结果是_15在R
4、tABC中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_16若抛物线与轴没有交点,则的取值范围是_17在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比已知这本书的长为20 cm,则它的宽为_cm(结果保留根号)18如图是测量河宽的示意图,AE与BC相交于点D,B=C=90,测得BD=120m,DC=60m,EC=50m,求得河宽AB=_m三、解答题(共66分)19(10分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2016年的绿色建筑面积约为950万平方米,2018年达到了1862万平方米.
5、若2017年、2018年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2019年我市计划推行绿色建筑面积达到2400万平方米.如果2019年仍保持相同的年平均增长率,请你预测2019年我市能否完成计划目标?20(6分)用适当的方法解下列方程:(1)4x210; (2)3x2x50;21(6分)解方程:(1)x11x3=0;(1)3x16x+1=122(8分)已知二次函数yx2+bx+c的函数值y与自变量x之间的对应数据如表:x101234y1052125(1)求b、c的值;(2)当x取何值时,该二次函数有最小值,最小值是多少?23
6、(8分)如图,O为MBN角平分线上一点,O与BN相切于点C,连结CO并延长交BM于点A,过点A作ADBO于点D(1)求证:AB为O的切线;(2)若BC6,tanABC,求AD的长24(8分)如图,在RtABC中,ACB90,BAC30,点O是边AC的中点(1)在图1中,将ABC绕点O逆时针旋转n得到A1B1C1,使边A1B1经过点C求n的值(2)将图1向右平移到图2位置,在图2中,连结AA1、AC1、CC1求证:四边形AA1CC1是矩形;(3)在图3中,将ABC绕点O顺时针旋转m得到A2B2C2,使边A2B2经过点A,连结AC2、A2C、CC2请你直接写出m的值和四边形AA2CC2的形状;若A
7、B,请直接写出AA2的长25(10分)如图,在平面直角坐标系xOy中,直线yx2与反比例函数y(k为常数,k0)的图象在第一象限内交于点A,点A的横坐标为1(1)求反比例函数的表达式;(2)设直线yx2与y轴交于点C,过点A作AEx轴于点E,连接OA,CE求四边形OCEA的面积26(10分)如图,在ABC中,AB=AC,以AB为直径的O交BC于点D,过点D作EFAC于点E,交AB的延长线于点F(1)判断直线DE与O的位置关系,并说明理由;(2)如果AB=5,BC=6,求DE的长参考答案一、选择题(每小题3分,共30分)1、D【分析】根据平行线分线段成比例定理得出,再把已知条件代入求解即可【详解
8、】解:l1l2l3,DE4.2,即,解得:EF6.3,DFDE+EF10.1故选:D【点睛】本题考查平行线分线段成比例定理熟练掌握平行线分线段成比例定理是解题关键2、D【分析】根据反比例函数的性质,可求k的取值范围【详解】反比例函数y图象的每一条曲线上,y都随x的增大而增大,k20,k2故选:D【点睛】考核知识点:反比例函数.理解反比例函数性质是关键.3、C【解析】试题解析:从左边看一个正方形被分成三部分,两条分式是虚线,故C正确;故选C考点:简单几何体的三视图.4、A【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案【详解】解:,DEBC,故选:A【点睛】本题考查的是平行线分线段
9、成比例定理,灵活运用定理、找准对应关系是解题的关键5、D【解析】根据两个点关于原点对称时,它们的横纵坐标符号相反,即可求解【详解】解:点A(-2,1)关于原点对称的点A的坐标是(2,-1)故选:D【点睛】本题主要考查了关于原点对称点的性质,正确把握横纵坐标的关系是解题关键6、C【分析】易证ADEABC,然后根据相似三角形面积的比等于相似比的平方,继而求得SADE:S四边形BCED的值【详解】,AA,ADEABC,SADE:SABC1:9,SADE:S四边形BCED1:8,故选C.【点睛】此题考查了相似三角形的判定与性质此题难度不大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的
10、关键7、B【分析】将x=2代入方程即可求得k的值,从而得到正确选项【详解】解:一元二次方程x2-3x+k=0的一个根为x=2,22-32+k=0,解得,k=2,故选:B【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立8、B【解析】二次函数图象开口向上,a1,对称轴为直线,b1与y轴的正半轴相交,c1的图象经过第一、三、四象限;反比例函数图象在第一、三象限,只有B选项图象符合故选B9、C【分析】根据方程有两个相等的实数根,判断出根的判别式为0,据此求解即可【详解】关于的方程有两个相等的实数根,解得:故选:C【点睛】本题考查了一元二次方程根的情况与判别式的关系:
11、(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根10、D【分析】应用比例的基本性质,将各项进行变形,并注意分式的性质y0,这个条件.【详解】A. 由,则x与y的比例是2:3,只是其中一特殊值,故此项错误;B. 由,可化为,且y0,故此项错误;C. ,化简为,由B项知故此项错误;D. ,可化为,故此项正确;故答案选D【点睛】此题主要考查了比例的基本性质,正确运用已知变形是解题关键二、填空题(每小题3分,共24分)11、6【分析】先确定出点A的坐标,进而求出AB,再确定出点C的坐标,利用平移即可得出结论【详解】A(1,a)在反比例函数y=上,a=2,A(1
12、,2),点B在直线y=kx1上,B(0,1),AB=,四边形ABCD是正方形,BC=AB=,设B(m,0),m=3(舍)或m=3,C(3,0),点B向右平移3个单位,再向上平移1个单位,点D是点A向右平移3个单位,再向上平移1个单位,点D(2,3),将点D的坐标代入反比例函数y=中,k=6故答案为:6.【点睛】本题主要考察反比例函数与一次函数的交点问题,解题突破口是确定出点A的坐标.12、【解析】直接利用概率公式求解可得【详解】在这5个乒乓球中,编号是偶数的有3个,所以编号是偶数的概率为,故答案为:【点睛】本题考查了概率公式,关键是掌握随机事件的概率事件可能出现的结果数所有可能出现的结果数13
13、、1.【分析】由已知角相等,加上公共角,得到三角形ABD与三角形ACB相似,由相似得比例,将AB与AD长代入即可求出CD的长【详解】在ABD和ACB中,ABD=C,A=A,ABDACB,AB=6,AD=4,则CD=ACAD=94=1【点睛】考点:相似三角形的判定与性质14、1【分析】先分母有理化,然后把二次根式化为最简二次根式后合并即可【详解】解:原式2-21故答案为1【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍15、1【分析】根据直
14、角三角形外接圆的直径是斜边的长进行求解即可【详解】由勾股定理得:AB10,ACB90,AB是O的直径,这个三角形的外接圆直径是10;这个三角形的外接圆半径长为1,故答案为1【点睛】本题考查了90度的圆周角所对的弦是直径,熟练掌握是解题的关键.16、;【分析】利用根的判别式0列不等式求解即可【详解】解:抛物线与轴没有交点,即,解得:;故答案为:.【点睛】本题考查了抛物线与x轴的交点问题,利用根的判别式列出不等式是解题的关键17、 ()【解析】设它的宽为xcm由题意得. .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理
15、数,即,近似值约为0.618.18、1【分析】由两角对应相等可得BADCED,利用对应边成比例即可得两岸间的大致距离AB的长【详解】解:ADB=EDC,ABC=ECD=90,ABDECD,即 ,解得:AB= =1(米)故答案为1【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例三、解答题(共66分)19、(1)这两年我市推行绿色建筑面积的年平均增长率为40%;(2)如果2019年仍保持相同的年平均增长率,2019年我市能完成计划目标.【分析】(1)设这两年我市推行绿色建筑面积的年平均增长率x,根据2016年的绿色建筑面积约为950万平方
16、米和2018年达到了1862万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2019年绿色建筑面积,再与计划推行绿色建筑面积达到2400万平方米进行比较,即可得出答案【详解】(1)设这两年我市推行绿色建筑面积的年平均增长率为x,则有950(1+x)2=1862,解得,x1=0.4,x2=2.4(舍去),即这两年我市推行绿色建筑面积的年平均增长率为40%;(2)由题意可得,1862(1+40%)=2606.8,2606.82400,2019年我市能完成计划目标,即如果2019年仍保持相同的年平均增长率,2019年我市能完成计划目标.【点睛】本题考查了一元二次方程的应用,解
17、题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解20、(1);(2)【分析】(1)把方程化为:再利用直接开平方法求解即可得到答案;(2)由再计算 利用公式法求解即可得到答案【详解】解:(1) (2) b24ac61, 【点睛】本题考查的是一元二次方程的解法,掌握直接开平方法,公式法解一元二次方程是解题的关键21、 (1) x1=3,x1=1;(1) x1=,x1=【分析】(1)利用因式分解法求解可得;(1)整理为一般式,再利用公式法求解可得【详解】解:(1)原方程可以变形为(x3)(x+1)=0,x3=0,x+1=0,x1=3,x1=1;(1)方程整理为一般
18、式为3x16x1=0,a=3,b=6,c=1,=3643(1)=480,则,即【点睛】本题考查了解一元二次方程,应熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键22、(1)b=-4,c=5;(2)当x2时,二次函数有最小值为1【分析】(1)利用待定系数法求解即可;(2)根据图象上点的坐标,可得出图象的对称轴及顶点坐标,即可得到答案【详解】(1)把(0,5),(1,2)代入y=x2+bx+c得:,解得:,;(2)由表格中数据可得:、时的函数值相等,都是2,此函数图象的对称轴为直线,当x=2时,二次函数有最小值为1【点
19、睛】本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键23、(1)见解析;(2)AD2【分析】(1)作OEAB,先由AOD=BAD求得ABD=OAD,再由BCO=D=90及BOC=AOD求得OBCOADABD,最后证BOCBOE得OEOC,依据切线的判定可得;(2)先求得EOAABC,在RtABC中求得AC=8,AB=10,由切线长定理知BE=BC=6,AE=4,OE=3,继而得BO=3,根据相似三角形的性质即可得出结论.【详解】解:(1)过点O作OEAB于点E,O为MBN角平分线上一点,ABDCBD,又BC为O的切线,ACBC,ADBO于点D,D9
20、0,BCOD90,BOCAOD,BAD+ABD90,AOD+OAD90,AODBAD,ABDOAD,OBCOADABD,在BOC和BOE中,BOCBOE(AAS),OEOC,OEAB,AB是O的切线;(2)ABC+BAC90,EOA+BAC90,EOAABC,tanABC、BC6,ACBCtanABC8,则AB10,由(1)知BEBC6,AE4,tanEOAtanABC,OE3,OB3,ABDOBC,DACB90,ABDOBC,即,AD2故答案为:AD2【点睛】本题主要考查了切线的判定与性质. 解题的关键是掌握切线的判定,切线长定理,全等与相似三角形的判定与性质及解直角三角形的应用.24、(1
21、)n60;(2)见解析;(3)m120,四边形AA2CC2是矩形;AA23【分析】(1)利用等腰三角形的性质求出COC1即可(2)根据对角线相等的平行四边形是矩形证明即可(3)求出COC2即可,根据矩形的判定证明即可解决问题解直角三角形求出A2C2,再求出AA2即可【详解】(1)解:如图1中,由旋转可知:A1B1C1ABC,A1A30,OCOA,OA1OA,OCOA1,OCA1A130,COC1A1+OCA160,n60(2)证明:如图2中,OCOA,OA1OC1,四边形AA1CC1是平行四边形,OAOA1,OCOC1,ACA1C1,四边形AA1CC1是矩形(3)如图3中,OAOA2,OAA2OA2A30,COC2AOA21803030120,m120,OCOA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年巴音郭楞年货运从业资格证
- 2025年池州货车上岗证理论模拟考试题库
- 2024年度医院陪护人员雇佣合同3篇
- 2025废料买卖交易合同
- 2024年信用卡借款条款3篇
- 2024年度金融投资生意合作合同协议3篇
- 2025建设工程施工承包合同农村饮水安全工程施工承包合同
- 2024年二次抵押借款房产合同3篇
- 2024年标准型吊车买卖合同
- 烟草企业烟草浸泡液水质维护条例
- 社区家庭教育:隔代教育和亲子教育
- 重庆大学介绍课件
- 河北省邯郸市药品零售药店企业药房名单目录
- 低温烫伤参考课件
- 中药塌渍疗法操作评分标准
- 《电气装配车间生产工序流程卡》中英文对译版
- 金属材料与热处理全套ppt课件完整版教程
- 化工安全设施管理台账
- 电气仪表工程签证需要注意的问题案例
- 书信的写作-(PPT课件17张)
- 内分泌干扰物检测方法
评论
0/150
提交评论