2023学年山东省邹平市数学九上期末学业水平测试模拟试题含解析_第1页
2023学年山东省邹平市数学九上期末学业水平测试模拟试题含解析_第2页
2023学年山东省邹平市数学九上期末学业水平测试模拟试题含解析_第3页
2023学年山东省邹平市数学九上期末学业水平测试模拟试题含解析_第4页
2023学年山东省邹平市数学九上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题3分,共30分)1如图,在正方形ABCD中,H是对角线BD的中点,延长DC至E,使得DE=DB,连接BE,作DFBE交BC于点G,交BE于点F,连接CH、FH,下列结论:(1)HC=HF;(2)DG=2EF;(3)BEDF=2CD2;(4)SBDE=4SDFH;(5)HFDE,正确的个数是( )A5B4C3D22如果反比例函数y

2、的图象经过点(5,3),则k( )A15B15C16D163点A(3,2)关于x轴的对称点A的坐标为( )A(3,2)B(3,2)C(3,2)D(3,2)4如图,点A、B、C在O上,若BAC45,OB2,则图中阴影部分的面积为()A2BC4D5某水果园2017年水果产量为50吨,2019年水果产量为70吨,求该果园水果产量的年平均增长率设该果园水果产量的年平均增长率为,则根据题意可列方程为( )ABCD6如图,四边形中,设的长为,四边形的面积为,则与之间的函数关系式是( )ABCD7如图,在平面直角坐标系中,点M的坐标为M(,2),那么cos的值是()ABCD8如图,在平面直角坐标系中,已知正

3、比例函数的图象与反比例函数的图象交于,两点,当时,自变量的取值范围是( ) ABC或D或9已知x=1是方程x2+px+1=0的一个实数根,则p的值是()A0B1C2D210在正方形、矩形、菱形、平行四边形中,其中是中心对称图形的个数为()ABCD二、填空题(每小题3分,共24分)11某日6时至10时,某交易平台上一种水果的每千克售价、每千克成本与交易时间之间的关系分别如图1、图2所示(图1、图2中的图象分别是线段和抛物线,其中点P是抛物线的顶点).在这段时间内,出售每千克这种水果收益最大的时刻是_ ,此时每千克的收益是_ 12如果3a4b(a、b都不等于零),那么a+bb_13若圆锥的底面圆半

4、径为,圆锥的母线长为,则圆锥的侧面积为_.14如图1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点,当钟面显示点分时,分针垂直与桌面,点距离桌面的高度为公分,若此钟面显示点分时,点距桌面的高度为公分,如图2,钟面显示点分时,点距桌面的高度_.15如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AB的长为2.4km,则M,C两点间的距离为_km.16小亮和他弟弟在阳光下散步,小亮的身高为米,他的影子长米若此时他的弟弟的影子长为米,则弟弟的身高为_米17汽车刹车后行驶的距离(单位:)关于行驶的时间(单位:)的函数解析式是汽车刹车后到停下来前进了_18如图,的中线、交于

5、点,点在边上,那么的值是_.三、解答题(共66分)19(10分)2019年11月5日,第二届中国国际进口博览会(The 2nd China International lmport Expo)在上海国家会展中心开幕.本次进博会将共建开放合作、创新共享的世界经济,见证海纳百川的中国胸襟,诠释兼济天下的责任担当.小滕、小刘两人想到四个国家馆参观:.中国馆;.俄罗斯馆;.法国馆;.沙特阿拉伯馆.他们各自在这四个国家馆中任意选择一个参观,每个国家馆被选择的可能性相同.(1)求小滕选择.中国馆的概率;(2)用画树状图或列表的方法,求小滕和小刘恰好选择同一国家馆的概率. 20(6分)关于x的方程x24x2

6、m+20有实数根,且m为正整数,求m的值及此时方程的根21(6分)在ABC中,ABAC,A60,点D是线段BC的中点,EDF120,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F(1)如图1,若DFAC,垂足为F,证明:DEDF(2)如图2,将EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点FDEDF仍然成立吗?说明理由(3)如图3,将EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,DEDF仍然成立吗?说明理由22(8分)如图,在平面直角坐标系中,点是轴正半轴上的一动点,抛物线(是常数,且过点,与轴交于两点,点在点左侧,连接,以为边做等

7、边三角形,点与点在直线两侧(1)求B、C的坐标;(2)当轴时,求抛物线的函数表达式;(3)求动点所成的图像的函数表达式;连接,求的最小值23(8分)车辆经过某市收费站时,可以在4个收费通道 A、B、C、D中,可随机选择其中的一个通过(1)车辆甲经过此收费站时,选择A通道通过的概率是;(2)若甲、乙两辆车同时经过此收费站,请用列表法或树状图法确定甲乙两车选择不同通道通过的概率24(8分)解方程:2x2+3x1=125(10分)如图,AD是O的直径,AB为O的弦,OPAD,OP与AB的延长线交于点P,过B点的切线交OP于点C(1)求证:CBP=ADB(2)若OA=2,AB=1,求线段BP的长.26

8、(10分)如图,ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3),(1)画出ABC关于原点O的中心对称图形A1B1C1;画出ABC绕原点O逆时针旋转90得到的A2B2C2,写出点C2的坐标;(2)若ABC上任意一点P(m,n)绕原点O逆时针旋转90的对应点为Q,则点Q的坐标为_.(用含m,n的式子表示)参考答案一、选择题(每小题3分,共30分)1、B【解析】由等腰三角形“三线合一”的性质可得EF=BF,根据H是正方形对角线BD的中点可得CH=DH=BH,即可证明HF是BDE的中位线,可得HF=DE,HF/DE;由BD=DE即可得HC=HF;利用直角三角形两锐角互余的关系可得CBE

9、=CDG,利用ASA可证明BCEDCG,可得DG=BE,可判定DG=2EF,由正方形的性质可得BD2=2CD2,根据CBE=CDG,E是公共角可证明BCEDFE,即可得,即BEDF=DEBC,可对进行判定,根据等底等高的三角形面积相等可对进行判定,综上即可得答案.【详解】BD=DE,DFBE,EF=BF,H是正方形ABCD对角线BD的中点,CH=DH=BH=BD,HF是BDE的中位线,HF=DE=BD=CH,HF/DE,故正确,CBE+E=90,FDE+E=90,CBE=FDE,又CD=BC,DCG=BCE=90,BCEDCG,DG=BE,BE=2EF,DG=2EF,故正确,CBE=FDE,E

10、=E,BCEDFE,即BEDF=DEBC,BD2=CD2+BC2=2CD2DE2=2CD2,DEBC2CD2,BEDF2CD2,故错误,DH=BD,SDFH=SDFB,BF=BE,SDFB=SBDE,SDFH=SBDE,即SBDE=4SDFH,故正确,综上所述:正确的结论有,共4个,故选B.【点睛】本题考查正方形的性质、等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及三角形中位线的性质,综合性较强,熟练掌握所学性质及定理是解题关键.2、D【分析】将点的坐标代入反比例函数解析式中可求k的值【详解】反比例函数的图象经过点(5,3),k+1=53=15,k=16故选:D【点睛】本题

11、考查了反比例函数图象上点的坐标特征,掌握图象上的点的坐标满足解析式是本题的关键3、D【分析】直接利用关于x轴对称点的性质得出符合题意的答案【详解】解:点A(3,2)关于x轴的对称点A的坐标为:(3,2),故选:D【点睛】本题考查了关于x轴对称的点的坐标特征,关于x轴对称的点:横坐标不变,纵坐标互为相反数4、A【分析】先证得三角形OBC是等腰直角三角形,通过解直角三角形求得BC和BC边上的高,然后根据S阴影=S扇形OBC-SOBC即可求得【详解】BAC45,BOC90,OBC是等腰直角三角形,OB2,OBC的BC边上的高为:,S阴影=S扇形OBC-SOBC=,故选:A【点睛】本题考查了扇形的面积

12、公式:(n为圆心角的度数,R为圆的半径)也考查了等腰直角三角形三边的关系和三角形的面积公式5、B【分析】根据2019年的产量=2017年的产量(1+年平均增长率)2,即可列出方程【详解】解:根据题意可得,2018年的产量为50(1+x),2019年的产量为50(1+x)(1+x)=50(1+x)2,即所列的方程为:50(1+x)2=1故选:B【点睛】此题主要考查了一元二次方程的应用,解题关键是要读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程6、C【分析】四边形ABCD图形不规则,根据已知条件,将ABC绕A点逆时针旋转90到ADE的位置,求四边形ABCD的面积问题转化为求梯形ACDE

13、的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底DE,下底AC,高DF分别用含x的式子表示,可表示四边形ABCD的面积【详解】作AEAC,DEAE,两线交于E点,作DFAC垂足为F点,BAD=CAE=90,即BAC+CAD=CAD+DAEBAC=DAE又AB=AD,ACB=E=90ABCADE(AAS)BC=DE,AC=AE,设BC=a,则DE=a,DF=AE=AC=4BC=4a,CF=AC-AF=AC-DE=3a,在RtCDF中,由勾股定理得,CF1+DF1=CD1,即(3a)1+(4a)1=x1,解得:a=,y=S四边形ABCD=S梯形ACDE=(DE+AC)DF=(a+

14、4a)4a=10a1=x1故选C【点睛】本题运用了旋转法,将求不规则四边形面积问题转化为求梯形的面积,充分运用了全等三角形,勾股定理在解题中的作用7、D【分析】如图,作MHx轴于H利用勾股定理求出OM,即可解决问题【详解】解:如图,作MHx轴于HM(,2),OH,MH2,OM3,cos,故选:D【点睛】本题考查解直角三角形的应用,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型8、D【解析】显然当y1y2时,正比例函数的图象在反比例函数图象的上方,结合图形可直接得出结论【详解】正比例函数y1=k1x的图象与反比例函数的图象交于A(-1,-2),B(1,2)点,当y1y2时,自变量

15、x的取值范围是-1x0或x1故选:D【点睛】本题考查了反比例函数与一次函数的交点问题,数形结合的思想是解题的关键9、D【分析】把x=1代入x2+px+1=0,即可求得p的值.【详解】把x=1代入把x=1代入x2+px+1=0,得1+p+1=0,p=-2.故选D.【点睛】本题考查了一元二次方程的解得定义,能使一元二次方程成立的未知数的值叫作一元二次方程的解,熟练掌握一元二次方程解得定义是解答本题的关键.10、D【解析】根据中心对称图形的定义:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可直接选出答案【详解】在正方形、矩形、菱形、平行四边形中,

16、其中都是中心对称图形,故共有个中心对称图形故选D【点睛】本题考查了中心对称图形,正确掌握中心对称图形的性质是解题的关键二、填空题(每小题3分,共24分)11、9时 元 【分析】观察图象找出点的坐标,利用待定系数法即可求出 关于x的函数关系式,=者做差后,利用二次函数的性质,即可解决最大收益问题.【详解】解:设交易时间为x,售价为,成本为,则设图1、图2的解析式分别为:,依题意得 解得出售每千克这种水果收益: 当 时,y取得最大值,此时: 在这段时间内,出售每千克这种水果收益最大的时刻是9时,此时每千克的收益是元故答案为: 9时;元【点睛】本题考查了待定系数法求函数解析式、二次函数的性质,解题的

17、关键是:观察函数图象根据点的坐标,利用待定系数法求出关于x的函数关系式.12、7【解析】直接利用已知把a,b用同一未知数表示,进而计算得出答案【详解】3a4b(a、b都不等于零),设a4x,则b3x,那么a+ba故答案为:73【点睛】此题主要考查了比例的性质,正确表示出a,b的值是解题关键13、【分析】根据圆锥的侧面积公式:S侧=代入数据计算即可.【详解】解:圆锥的侧面积=.故答案为:【点睛】本题考查了圆锥的侧面积公式,属于基础题型,熟练掌握计算公式是解题关键.14、公分【分析】根据当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分得出AB=10,进而得出A1C=16,求出OA

18、2=OA=6,过A2作A2DOA1从而得出A2D=3即可【详解】如图:可得(公分)AB=10(公分),(公分)过A2作A2DOA1,(公分)钟面显示点分时,点距桌面的高度为:(公分).故答案为:19公分.【点睛】此题主要考查了解直角三角形以及钟面角,得出A2OA1=30,进而得出A2D=3,是解决问题的关键15、1.1【解析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=12 AB=1.1km【详解】在RtABC中,ACB=90,M为AB的中点,MC=12故答案为:1.1【点睛】此题考查直角三角形的性质,解题关键点是熟练掌握在直角三角形中,斜边上的中线等于斜边的一半,理解题意,将实际问题

19、转化为数学问题是解题的关键.16、1.4【解析】同一时刻物高与影长成正比例,1.75:2=弟弟的身高:1.6,弟弟的身高为1.4米故答案是:1.4.17、6【分析】根据二次函数的解析式可得出汽车刹车时时间,将其代入二次函数解析式中即可得出s的值.【详解】解:根据二次函数解析式=-6(t-2t+1-1)=-6(t-1) +6可知,汽车的刹车时间为t=1s,当t=1时,=121-61=6(m)故选:6【点睛】本题考查了二次函数性质的应用,理解透题意是解题的关键18、【分析】根据三角形的重心和平行线分线段成比例解答即可【详解】ABC的中线AD、CE交于点G,G是ABC的重心,GFBC,DC=BC,

20、,故答案为:.【点睛】此题考查三角形重心问题以及平行线分线段成比例,解题关键是根据三角形的重心得出比例关系三、解答题(共66分)19、(1);(2).【分析】(1)由于每个国家馆被选择的可能性相同,即可得到中国馆被选中的概率为;(2)画树状图列出所有可能性,即可求出概率.【详解】.解:(1)在这四个国家馆中任选一个参观,每个国家馆被选择的可能性相同在这四个国家馆中小滕选择.中国馆的概率是;(2)画树状图分析如下:共有16种等可能的结果,小滕和小刘恰好选择同一国家馆参观的结果有4种小滕和小刘恰好选择同一国家馆参观的概率.【点睛】本题考查了树状图求概率,属于常考题型.20、m=1,【分析】直接利用

21、根的判别式得出m的取值范围,再由m为正整数进而求出m的值,然后再将m代入方程中解方程得出答案【详解】解:关于x的方程x24x2m+20有实数根解得又为正整数将代回方程中,得到x24x40即求得方程的实数根为:.故答案为:,方程的实数根为:【点睛】此题主要考查了根的判别式,当时方程有两个不相等的实数根;当时方程有两个相等的实数根;时方程无实数根.21、(1)见解析;(2)结论仍然成立.,DEDF,见解析;(3)仍然成立,DEDF,见解析【分析】(1)由题意根据全等三角形的性质与判定,结合等边三角形性质证明BEDCFD(ASA),即可证得DEDF;(2)根据题意先取AC中点G,连接DG,继而再全等

22、三角形的性质与判定,结合等边三角形性质证明EDGFDC(ASA),进而证得DEDF;(3)由题意过点D作DNAC于N,DMAB于M, 继而再全等三角形的性质与判定,结合等边三角形性质证明DMEDNF(ASA),即可证得DEDF【详解】解:(1)AB=AC,A=60,ABC是等边三角形,即B=C=60,D是BC的中点,BD=CD,EDF=120,DFAC,FDC=30,EDB=30,BEDCFD(ASA),DE=DF. (2)取AC中点G,连接DG,如下图, D为BC的中点,DG=AC=BD=CD,BDG是等边三角形,GDE+EDB=60,EDF=120,FDC+EDB=60,EDG=FDC,E

23、DGFDC(ASA),DE=DF,结论仍然成立. (3)如下图,过点D作DNAC于N,DMAB于M,DME=DNF=90,由(1)可知B=C=60,NDC=BDM=30,DM=DN,MDN=120,即NDF=MDE,DMEDNF(ASA),DE=DF,仍然成立.【点睛】本题是几何变换综合题,主要考查全等三角形的判断和性质以及等边三角形的性质,根据题意构造出全等三角形是解本题的关键22、(1)、;(2);(3);【分析】(1),令,则或4,即可求解;(2)当轴时,则,则,故点,即可求解;(3)构造一线三垂直相似模型由,则,解得:,故点,即可求解【详解】解:(1)当时,即,解得或4,故点、的坐标分

24、别为:、;(2)等边三角形, 当轴时,故点,即,解得:,故抛物线的表达式为:;(3)如图,过点作于点,过点作轴的垂线于点,过点作轴交轴于点交于点,为等边三角形,点为的中点, ,点,其中,解得:,故点,即动点所成的图像的函数满足 ,动点所成的图像的函数表达式为:由得点,故当时,的最小值为,即的最小值为【点睛】本题考查了二次函数综合运用,涉及到解直角三角形、三角形相似等,其中(3)构造一线三直角模型,用三角形相似的方法求解点的坐标,是本题的难点23、(1);(2),图见解析【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论【详解】(1)共有4种可能,所以选择A通道通过的概率是.故答案为:,(2)两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,选择不同通道通过的概率=故答案为(1);(2),图见解析【点睛】本题考查了概率公式中的等可能概型,和利用树状图解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论