2023学年山东省烟台市莱州市数学九年级第一学期期末经典模拟试题含解析_第1页
2023学年山东省烟台市莱州市数学九年级第一学期期末经典模拟试题含解析_第2页
2023学年山东省烟台市莱州市数学九年级第一学期期末经典模拟试题含解析_第3页
2023学年山东省烟台市莱州市数学九年级第一学期期末经典模拟试题含解析_第4页
2023学年山东省烟台市莱州市数学九年级第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如图,是由两个正方体组成的几何体,则该几何体的俯视图为( )ABCD2若a是方程的一个解,则的值为A3BC9D3已知反比例函数图像上三个点的坐标分别是,能正确反映的大小关系的是( )A

2、BCD4在平面直角坐标系中,点P(2,3)关于原点对称的点Q的坐标为( )A(2,3)B(2,3)C(3,2)D(2,3)5如图,在中,于点,则的值为( )A4BCD76如图,E是平行四边形ABCD的对角线BD上的点,连接AE并延长交BC于点F,且,则的值是( )ABCD7如图,已知在ABC中,DEBC,DE2,则BC的长是()A3B4C5D68如图,将AOB绕点O按逆时针方向旋转45后得到AOB,若AOB=15,则AOB的度数是( )A25B30C35D409如图,ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置如果ABC的面积为10,且sinA,那么点C的位置可以在( )A点

3、C1处B点C2处C点C3处D点C4处10如图,ABOB,AB=2,OB=4,把ABO绕点O顺时针旋转60得CDO,则AB扫过的面积(图中阴影部分)为()A2B2CD二、填空题(每小题3分,共24分)11小明和小亮在玩“石头、剪子、布”的游戏,两人一起做同样手势的概率是_12已知点A(a,2019)与点A(2020,b)是关于原点O的对称点,则a+b的值为_13如图,在矩形中,点为的中点,交于点,连接,下列结论: ;若,则.其中正确的结论是_.(填写所有正确结论的序号)14将抛物线C1:yx24x+1先向左平移3个单位,再向下平移2个单位得到将抛物线C2,则抛物线C2的解析式为:_15比较三角函

4、数值的大小:sin30_cos30(填入“”或“”)16如图,已知P的半径为4,圆心P在抛物线yx22x3上运动,当P与x轴相切时,则圆心P的坐标为_17若线段a、b满足,则的值为_18将抛物线 y(x+2)25向右平移2个单位所得抛物线解析式为_三、解答题(共66分)19(10分)如图,已知O经过ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD8,AC9,sinC,求O的半径20(6分)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人(1)求两次传球后,球恰在B手中的概率;(2

5、)求三次传球后,球恰在A手中的概率21(6分)在平面直角坐标系中,抛物线经过点A、B、C,已知A(-1,0),B(3,0),C(0,-3).(1)求此抛物线的函数表达式;(2)若P为线段BC上一点,过点P作轴的平行线,交抛物线于点D,当BCD面积最大时,求点P的坐标;(3)若M(m,0)是轴上一个动点,请求出CM+MB的最小值以及此时点M的坐标.22(8分)如图,抛物线y1a(x1)2+4与x轴交于A(1,0)(1)求该抛物线所表示的二次函数的表达式;(2)一次函数y2x+1的图象与抛物线相交于A,C两点,过点C作CB垂直于x轴于点B,求ABC的面积23(8分)箱子里有4瓶牛奶,其中有一瓶是过

6、期的.现从这4瓶牛奶中任意抽取牛奶饮用,抽取任意一瓶都是等可能的.(1)若小芳任意抽取1瓶,抽到过期的一瓶的概率是 ;(2)若小芳任意抽取2瓶,请用画树状图或列表法求,抽出的2瓶牛奶中恰好抽到过期牛奶的概率.24(8分)已知二次函数yx22x3(1)求函数图象的顶点坐标,与坐标轴的交点坐标,并画出函数的大致图象;(2)根据图象直接回答:当y0时,求x的取值范围;当y3时,求x的取值范围25(10分)如图,在社会实践活动中,某数学兴趣小组想测量在楼房CD顶上广告牌DE的高度,他们先在点A处测得广告牌顶端E的仰角为60,底端D的仰角为30,然后沿AC方向前行20m,到达B点,在B处测得D的仰角为4

7、5(C,D,E三点在同一直线上).请你根据他们的测量数据计算这广告牌DE的高度(结果保留小数点后一位,参考数据:,).26(10分)李师傅驾驶出租车匀速地从西安市送客到咸阳国际机场,全程约,设小汽车的行驶时间为 (单位:),行驶速度为(单位:),且全程速度限定为不超过.(1)求关于的函数表达式;(2)李师傅上午点驾驶小汽车从西安市出发.需在分钟后将乘客送达咸阳国际机场,求小汽车行驶速度.参考答案一、选择题(每小题3分,共30分)1、D【分析】根据俯视图是从上面看得到的图形进行求解即可.【详解】俯视图为从上往下看,所以小正方形应在大正方形的右上角,故选D.【点睛】本题考查了简单组合体的三视图,熟

8、知俯视图是从上方看得到的图形是解题的关键.2、C【解析】由题意得:2a2-a-3=0,所以2a2-a=3,所以6a2-3a=3(2a2-a)=33=9,故选C.3、B【分析】根据反比例函数关系式,把2、1、2代入分别求出,然后比较大小即可.【详解】将A、B、C三点横坐标带入函数解析式可得,.故选:B.【点睛】本题考查反比例函数图象上点的坐标,正确利用函数表达式求点的坐标是解题关键.4、A【解析】试题分析:根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),即关于原点的对称点,横纵坐标都变成相反数”解答根据关于原点对称的点的坐标的特点,点P(2,3)关于原点过对称的点的坐标

9、是(2,3)故选A考点:关于原点对称的点的坐标5、B【分析】利用和可知,然后分别在和中利用求出BD和CD的长度,最后利用BC=BD+CD即可得出答案.【详解】 在中,在中, 故选B【点睛】本题主要考查解直角三角形,掌握锐角三角函数的意义是解题的关键.6、A【分析】由BFAD,可得,再借助平行四边形的性质把AD转化为BC即可【详解】四边形ABCD是平行四边形,ADBC,BFAD,故选A【点睛】本题主要考查平行四边形的性质和平行线截线段成比例定理,掌握平行线截线段成比例定理是解题的关键7、D【分析】由DEBC可证ADEABC,得到,即可求BC的长【详解】DEBC,ADEABC,,DE=2,BC1故

10、选D【点睛】本题主要考查了相似三角形的判定与性质,解决本题的关键是要熟练掌握相似三角形的判定和性质.8、B【详解】将AOB绕点O按逆时针方向旋转45后得到AOB,AOA=45,AOB=AOB=15,AOB=AOA-AOB=45-15=30,故选B9、D【解析】如图:AB=5, D=4, , ,AC=4,在RTAD中,D,AD=8, A=,故答案为D.10、C【解析】根据勾股定理得到OA,然后根据边AB扫过的面积=解答即可得到结论【详解】如图,连接OA、OCABOB,AB=2,OB=4,OA=,边AB扫过的面积= =故选C【点睛】本题考查了扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解题

11、的关键二、填空题(每小题3分,共24分)11、【分析】画树状图展示所有9种等可能的结果数,再找出两人随机同时出手一次,做同样手势的结果数,然后根据概率公式求解【详解】画树状图为:共有9种等可能的结果数,其中两人随机同时出手一次,做同样手势的结果数为3,故两人一起做同样手势的概率是的概率为故答案为:【点睛】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比12、1【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案【详解】解:点A(a,2019)与点A(2020,b)是关于原点O的对称点,a2020,b2019,a+b1故答案为:1【点睛】此题主

12、要考查了关于原点对称的点的性质,正确记忆横纵坐标的符号是解题关键13、【分析】根据矩形的性质和余角的性质可判断;延长CB,FE交于点G,根据ASA可证明AEFBEG,可得AF=BG,EF=EG,进一步即可求得AF、BC与CF的关系,SCEF与SEAF+SCBE的关系,进而可判断与;由,结合已知和锐角三角函数的知识可得,进一步即可根据AAS证明结论;问题即得解决【详解】解:,四边形ABCD是矩形,B=90,所以正确;延长CB,FE交于点G,如图,在AEF和BEG中,FAE=GBE=90,AE=BE,AEF=BEG,AEFBEG(ASA),AF=BG,EF=EG,SCEG=SCEF,CEEG,CG

13、=CF,AF+BC=BG+BC=CG=CF,所以错误;SCEF=SCEG=SBEG+SCBE=SEAF+SCBE,所以正确;若,则,在和中,CEF=D=90,CF=CF,所以正确综上所述,正确的结论是故答案为:【点睛】本题考查了矩形的性质、余角的性质、全等三角形的判定和性质以及锐角三角函数等知识,综合性较强,属于常考题型,正确添加辅助线、熟练掌握上述基本知识是解题的关键14、y(x+1)21【分析】先确定抛物线C1:yx24x+1的顶点坐标为(2,3),再利用点平移的坐标变换规律,把点(2,3)平移后对应点的坐标为(1,1),然后根据顶点式写出平移后的抛物线解析式【详解】解:抛物线C1:yx2

14、4x+1(x2)23的顶点坐标为(2,3),把点(2,3)先向左平移3个单位,再向下平移2个单位后所得对应点的坐标为(-1,1),所以平移后的抛物线的解析式为y(x+1)21,故答案为y(x+1)21【点睛】此题主要考查二次函数的平移,解题的关键是熟知二次函数平移的特点.15、【分析】直接利用特殊角的三角函数值分别代入比较得出答案【详解】解:sin30,cos30sin30cos30故答案为:【点睛】本题主要考查了特殊角的三角函数值,掌握特殊角的三角函数值是解题关键.16、(1+2,4),(12,4),(1,4)【分析】根据已知P的半径为4和P与x轴相切得出P点的纵坐标,进而得出其横坐标,即可

15、得出答案【详解】解:当半径为4的P与x轴相切时,此时P点纵坐标为4或4,当y4时,4x22x3,解得:x11+2,x212,此时P点坐标为:(1+2,4),(12,4),当y4时,4x22x3,解得:x1x21,此时P点坐标为:(1,4)综上所述:P点坐标为:(1+2,4),(12,4),(1,4)故答案为:(1+2,4),(12,4),(1,4)【点睛】此题是二次函数综合和切线的性质的综合题,解答时通过数形结合以得到P点纵坐标是解题关键。17、【分析】由可得b=2a,然后代入求值.【详解】解:由可得b=2a,所以 =,故答案为.【点睛】本题考查分式的化简求值,掌握比例的性质是本题的解题关键.

16、18、yx21【分析】根据平移规律“左加右减”解答【详解】按照“左加右减,上加下减”的规律可知:y(x2)21向右平移2个单位,得:y(x22)21,即yx21故答案是:yx21【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减三、解答题(共66分)19、O的半径为【解析】如图,连接OA交BC于H首先证明OABC,在RtACH中,求出AH,设O的半径为r,在RtBOH中,根据BH2+OH2OB2,构建方程即可解决问题。【详解】解:如图,连接OA交BC于H点A为的中点,OABD,BHDH4,AHCBHO90,AC9,AH3,设O的半径为r,在RtBOH中,BH2+OH2OB

17、2,42+(r3)2r2,r,O的半径为【点睛】本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题20、(1);(2) .【解析】试题分析:(1)直接列举出两次传球的所有结果,球球恰在B手中的结果只有一种即可求概率;(2)画出树状图,表示出三次传球的所有结果,三次传球后,球恰在A手中的结果有2种,即可求出三次传球后,球恰在A手中的概率试题解析:解:(1)两次传球的所有结果有4种,分别是ABC,ABA,ACB,ACA每种结果发生的可能性相等,球球恰在B手中的结果只有一种,所以两次传球后,球恰在B手中的概率是;(2)树状图如

18、下,由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等其中,三次传球后,球恰在A手中的结果有ABCA,ACBA这两种,所以三次传球后,球恰在A手中的概率是考点:用列举法求概率21、(1);(2)P(,),面积最大为;(3)CM+MB最小值为,M(,0)【分析】(1)利用待定系数法即可求得此抛物线的解析式;(2)由待定系数法即可求得直线BC的解析式,设P(a,a-3),得出PD的长,列出SBDC的表达式,化简成顶点式,即可求解;(3)取G点坐标为(0,),过M点作MBBG,用BM代替BM,即可得出最小值的情况,再将直线BG、直线BC的解析式求出,求得M点坐标和CGB的度数,再根据C

19、GB的度数利用三角函数得出最小值BC的值.【详解】解:(1)抛物线经过点A、B、C,A(-1,0),B(3,0),C(0,-3),代入表达式,解得a= 1,b=-2,c=-3,故该抛物线解析式为:.(2)令,x1=-1,x2=3,即B(3,0),设直线BC的解析式为y=kx+b,将B、C代入得:k=,1,b=-3,直线BC的解析式为y=x-3,设P(a,a-3),则D(a,a2-2a-3),PD=(a-3)-(a2-2a-3)= -a2+3aSBDC=SPDC+SPDB=PD3=,当a=时,BDC的面积最大,且为为,此时P(,);(3)如图,取G点坐标为(0,),连接BG,过M点作MBBG,B

20、MBM,当C、M、B在同一条直线上时,CM+MB最小.可求得直线BG解析式为:,BCBG故直线BC解析式为为,令y=0,则x=,BC与x轴交点为(,0)OG=,OB=3,CGB=60,BC= CGsinCGB=,综上所述:CM+MB最小值为,此时M(,0).【点睛】此题考查了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用22、(1)y1(x1)2+4;(2).【分析】(1)解答时先根据已知条件求出二次函数的表达式,(2)根据一次函数与抛物线相交的关系算出交点坐标,

21、就可以算出三角形的面积【详解】(1)抛物线y1a(x1)2+4与x轴交于A(1,0),0a(11)2+4,得a1,y1(x1)2+4,即该抛物线所表示的二次函数的表达式是y1(x1)2+4;(2)由 得或一次函数y2x+1的图象与抛物线相交于A,C两点,点A(1,0),点C的坐标为(2,3),过点C作CB垂直于x轴于点B,点B的坐标为(2,0),点A(1,0),点C(2,3),AB2(1)3,BC3,ABC的面积是=【点睛】此题重点考察学生对二次函数的理解,一次函数与二次函数的性质是解题的关键23、(1);(2)抽出的2瓶牛奶中恰好抽到过期牛奶的概率为【分析】(1)直接根据概率公式计算可得;(

22、2)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A,画树状图可得所有等可能结果,从所有等可能结果中找到抽出的2瓶牛奶中恰好抽到过期牛奶的结果数,再根据概率公式计算可得【详解】(1):(1)小芳任意抽取1瓶,抽到过期的一瓶的概率是,故答案为:.(2)设这四瓶牛奶分别记为、,其中过期牛奶为画树状图如图所示,由图可知,共有12种等可能结果;由树状图知,所抽取的12种等可能结果中,抽出的2瓶牛奶中恰好抽到过期牛奶的有6种结果,所以抽出的2瓶牛奶中恰好抽到过期牛奶的概率为【点睛】本题考查了列表法与树状图法,以及概率公式,用到的知识点为:概率=所求情况数与总情况数之比24、(1)顶点坐标为(1,4),与x轴的交点坐标为(1,0),(1,0),与y轴的交点坐标为(0,1),作图见解析;(2)当1x1时,y0;当x0或x1时,y1【分析】(1)利用配方法得到y(x1)24,从而得到抛物线的顶点坐标,再计算自变量为0对应的函数值得到抛物线与y轴的交点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论