版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、北师大版八年级数学下册第四章因式分解专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式中,从左到右的变形是因式分解的是()A2a22a+12a(a1)+1B(x+y)(xy)x2y2Cx24
2、xy+4y2(x2y)2Dx2+1x(x+)2、不论x,y取何实数,代数式x24xy26y13总是( )A非负数B正数C负数D非正数3、下列多项式中,不能用公式法因式分解的是( )ABCD4、若一个等腰三角形的两边m,n满足9m2n213,3mn13,则该等腰三角形的周长为( )A11B13C16D11或165、当n为自然数时,(n+1)2(n3)2一定能()A被5整除B被6整除C被7整除D被8整除6、对于有理数a,b,c,有(a+100)b(a+100)c,下列说法正确的是()A若a100,则bc0B若a100,则bc1C若bc,则a+bcD若a100,则abc7、已知a2(b+c)b2(a
3、+c)2021,且a、b、c互不相等,则c2(a+b)2020()A0B1C2020D20218、下列等式中,从左到右的变形是因式分解的是( )ABCD9、下列因式分解正确的是( )Ax24x4x(x4)4B96(mn)(nm)2(3mn)2C4x22x1(2x1)2Dx4y4(x2y2)(x2y2)10、下列从左边到右边的变形,属于因式分解的是( )Ax2x6(x2)(x3)Bx22x1x(x2)1Cx2y2(xy)2D(x1)(x1)x21第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若实数x满足,则_2、因式分解:_3、已知x2+mx+16能用完全平方公式因式分
4、解,则m的值为 _4、若ABC的三条边a,b,c满足关系式:a4b2c2a2c2b40,则ABC的形状是_5、分解因式:a32a2b+ab2_三、解答题(5小题,每小题10分,共计50分)1、将下列各式分解因式:(1); (2)2、把下列各式因式分解:(1) (2)3、已知,求的值4、(1)因式分解: (2)计算:5、分解因式:-参考答案-一、单选题1、C【分析】根据因式分解的定义逐个判断即可【详解】解:A从左到右的变形不属于因式分解,故本选项不符合题意;B从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C从左到右的变形属于因式分解,故本选项符合题意;D等式的右边是分式与整式的
5、积,即从左到右的变形不属于因式分解,故本选项不符合题意;故选:C【点睛】此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式2、A【分析】先把原式化为,结合完全平方公式可得原式可化为从而可得答案.【详解】解:x24xy26y13 故选A【点睛】本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.3、D【分析】利用完全平方公式把,分解因式,利用平方差公式把,从而可得答案.【详解】解:故A不符合题意;故B不符合题意;故C不符合题意;,不能用公式法分解因式,故D符合题意;故选D【点睛】本题考查的是利用平方差公式与完全平方公
6、式分解因式,熟悉平方差公式与完全平方公式的特点是解题的关键.4、C【分析】根据题意和通过因式分解得出m和n的两个关系式求出m、n,再分情况讨论求解即可【详解】解:9m2-n2=-13,3m+n=13,(3m+n)(3m-n)=-13,n-3m=1,由得:m=2,n=7;若2是腰长时,三角形的三边分别为2、2、7,2+27,不能组成三角形,若2是底边时,三角形的三边分别为2、7、7,能组成三角形,周长=7+7+2=16综上所述,等腰三角形的周长是16故选:C【点睛】本题考查了等腰三角形的定义、因式分解的应用、三角形的三边关系,难点在于要分情况讨论5、D【分析】先把(n+1)2(n3)2分解因式可
7、得结果为:从而可得答案.【详解】解: (n+1)2(n3)2 n为自然数所以(n+1)2(n3)2一定能被8整除,故选D【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解题的关键.6、A【分析】将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得【详解】解:,或,即:或,A选项中,若,则正确;其他三个选项均不能得出,故选:A【点睛】题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键7、B【分析】根据题意先通过已知等式,找到a,b,c的关系再求值即可得出答案【详解】解:a2(b+c)b2(a+c)a2b+a2cab2b2c0ab(ab)+c(a+b)(ab)0(a
8、b)(ab+ac+bc)0aba2(b+c)2021a(ab+ac)2021a(bc)2021abc2021abc2021原式c(ac+bc)2020c(ab)2020abc2020202120201故选:B【点睛】本题考查用因式分解求代数式的值,利用题中等式得到ab+bc+ac=0是解答本题的关键8、C【分析】根据因式分解的定义:把一个多项式化成几个整式乘积的形式,即可进行判断【详解】A. ,变形是整式乘法,不是因式分解,故A错误;B. ,右边不是几个因式乘积的形式,故B错误;C. ,把一个多项式化成两个整式乘积的形式,变形是因式分解,故C正确;D. ,变形是整式乘法,不是因式分解,故D错误
9、【点睛】本题考查因式分解的定义,掌握因式分解的定义是解题的关键9、B【分析】利用公式法进行因式分解判断即可【详解】解:A、,故A错误,B、96(mn)(nm)2(3mn)2,故B正确,C、4x22x1,无法因式分解,故C错误,D、,因式分解不彻底,故D错误,故选:B【点睛】本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底10、A【分析】把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,根据概念逐一判断即可.【详解】解:x2x6(x2)(x3)属于因式分解,故A符合题意;x22x1x(x2)1,右边没有化为整式的积的形式,不
10、是因式分解,故B不符合题意;x2y2(xy)2的左右两边不相等,不能分解因式,不是因式分解,故C不符合题意;(x1)(x1)x21是整式的乘法运算,不是因式分解,故D不符合题意;故选A【点睛】本题考查的是因式分解的概念,掌握“利用因式分解的概念判断代数变形是否是因式分解”是解题的关键.二、填空题1、2022【分析】将x22x+1,x22x1代入计算可求解【详解】解:x22x10,x22x+1,x22x1,原式2xx22x26x+20202x(2x+1)2x26x+20204x2+2x2x26x+20202x24x+20202(x22x)+202021+20202022故答案为:2022【点睛】
11、本题主要考查因式分解的应用,适当的进行因式分解,整体代入是解题的关键2、m(m+1)(m1)【分析】原式提取m,再利用平方差公式分解即可【详解】解:原式m(m212)m(m+1)(m1)故答案为:m(m+1)(m1)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键3、【分析】利用完全平方公式的结构特征判断,确定出m的值即可得到答案【详解】解:要使得能用完全平方公式分解因式,应满足,故答案为:【点睛】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法、完全平方公式是解本题的关键4、直角三角形或等腰三角形【分析】将a4b2c2a2c2b40因式分解,然后分析
12、不难得到三角形的形状【详解】解答:解:a4b2c2a2c2b40,(a2b2)(a2b2)c2(a2b2)0(a2b2)(a2b2c2)0a2b20或a2b2c20ABC为等腰三角形或直角三角形故答案为:直角三角形或等腰三角形【点睛】此题主要考查学生对因式分解法,等腰三角形的判定及勾股定理的综合运用能力,关键是对等式进行合理的因式分解5、【分析】先提取公因式a,再利用完全平方公式因式分解【详解】解:,故答案为:【点睛】本题考查综合利用提公因式法和公式法因式分解一般有公因式先提取公因式,再看是否能用公式法因式分解三、解答题1、(1);(2)【分析】(1)首先提取公因式-6,再利用完全平方公式继续
13、分解即可;(2)首先提取公因式3ab,再利用平方差进行分解即可【详解】解:(1)=;(2)= =【点睛】本题主要考查了提公因式法、完全平方公式和平方差公式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果有公因式先提取公因式,再考虑运用公式来分解2、(1);(2)【分析】(1) 提取公因式,即可得到答案;(2)先把原式化为,再提取公因式,即可得到答案 【详解】(1),原式 ;(2) ,原式,【点睛】本题考查用提公因式法进行因式分解,找出题目中的公因式是解题的关键3、4【分析】先利用平方差公式计算,再合并,然后根据,得到代入即可求解【详解】解: , 【点睛】本题主要考查了整式的混合运算,熟练掌握整式的混合运算法则是解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石河子大学《中小学生心理辅导》2021-2022学年第一学期期末试卷
- 石河子大学《武术》2021-2022学年第一学期期末试卷
- 石河子大学《基本乐理》2021-2022学年第一学期期末试卷
- 沈阳理工大学《专题产品设计》2022-2023学年第一学期期末试卷
- 沈阳理工大学《新能源与分布式发电》2023-2024学年期末试卷
- 沈阳理工大学《人工智能》2023-2024学年期末试卷
- 沈阳理工大学《计算机网络实践指导》2022-2023学年期末试卷
- 警察现场救护学习通超星期末考试答案章节答案2024年
- 沈阳理工大学《光电子学》2022-2023学年期末试卷
- 沈阳理工大学《德语国家社会与文化》2022-2023学年第一学期期末试卷
- 医科大学2024年12月精神科护理学作业考核试题答卷
- 论青少年合理怀疑精神的培育
- 机关干部礼仪培训课件
- 安徽省合肥市2024年七年级上学期期中数学试卷【附答案】
- 成都铁路局招聘2024届高校毕业生663人高频难、易错点500题模拟试题附带答案详解
- 《剪映专业版:短视频创作案例教程(全彩慕课版)》 课件 第2章 剪映专业版快速入门
- 中考物理试题及答案经典大全集高分
- DB11T 854-2023 占道作业交通安全设施设置技术要求
- 2024-2025学年浙教版八年级上册科学期中模拟卷
- 第6课《我们神圣的国土》 (教学设计)-部编版道德与法治五年级上册
- 模拟电子技术说课
评论
0/150
提交评论