精品试题北师大版八年级数学下册第六章平行四边形专项训练试卷_第1页
精品试题北师大版八年级数学下册第六章平行四边形专项训练试卷_第2页
精品试题北师大版八年级数学下册第六章平行四边形专项训练试卷_第3页
精品试题北师大版八年级数学下册第六章平行四边形专项训练试卷_第4页
精品试题北师大版八年级数学下册第六章平行四边形专项训练试卷_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、北师大版八年级数学下册第六章平行四边形专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,点E,F分别是AB,AC的中点已知B55,则AEF的度数是()A75B60C55D402、四

2、边形中,如果,则的度数是( )A110B100C90D303、已知正边形的每一个内角都是144,则的值是()A12B10C8D64、若一个正多边形每个外角都是36,则这个正多边形的边数为()A8B9C10D115、在平行四边形ABCD中,A30,那么B与A的度数之比为( )A4:1B5:1C6:1D7:16、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中a的度数是( )A220B180C270D2407、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中的度数是( )A180B220C240D2608、平行四边形OABC在平面直角坐标系中的位置如图所示,AOC45,OA

3、OC,则点B的坐标为()A(,1)B(1,)C(1,1)D(1,1)9、已知一个多边形的外角都等于,那么这个多边形的边数为( )A6B7C8D910、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是( )A任意四边形B平行四边形C对角线相等的四边形D对角线垂直的四边形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在 中, 于点 , 于点 若 , ,且 的周长为40,则 的面积为_2、如图,在ABC中,C90,BC9,AC12,点D为边AC的中点,点P为边BC上任意一点,若将CDP沿DP折叠得EDP,若点E在ABC的中位线上,则CP的长

4、度为 _3、如图,在四边形ABCD中,A110,C80,将BMN沿MN翻折,得到FMN若MFAD,FNDC,则D的度数为 _4、如图,在四边形ABCD中,在边AB,BC上分别找一点E,F使周长最小,此时_5、一个多边形的边数增加2,则内角和与外角和增加的度数之和是_度三、解答题(5小题,每小题10分,共计50分)1、如图,在四边形中,求四边形的面积2、如图1,在中,点,分别在边,上,连接,点在线段上,连接交于点(1)比较与的大小,并证明;若,求证:;3、如图1,已知:平行四边形ABCD中,的平分线CE交边AD于E,的平分线BG交CE于F,交AD于G(1)求证:;(2)如图2,若,BF、CE交于

5、点G,写出图中所有等腰直角三角形4、一个多边形,除一个内角外,其余各内角之和等于2012,求这个内角的度数及多边形的边数5、问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:如图(1),在正ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若BON60,则BMCN;如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若BON90,则BMCN然后运用类似的思想提出了如下命题:如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若BON108,则BMCN任务要求:(1)请你从三个命题中选择一个进行证明;(2)

6、请你继续完成下面的探索;在正n(n3)边形ABCDEF中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当BON等于多少度时,结论BMCN成立(不要求证明);如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,BON108时,试问结论BMCN是否成立若成立,请给予证明;若不成立,请说明理由-参考答案-一、单选题1、C【分析】证EF是ABC的中位线,得EFBC,再由平行线的性质即可求解【详解】解:点E,F分别是AB,AC的中点,EF是ABC的中位线,EFBC,AEF=B=55,故选:C【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形

7、中位线定理,证出EFBC是解题的关键2、C【分析】根据四边形内角和是360进行求解即可【详解】解:四边形的内角和是360,故选:C【点睛】本题考查四边形的内角和,是基础考点,难度较易,掌握相关知识是解题关键3、B【分析】根据多边形的内角和公式和已知得出144n(n2)180,解方程即可【详解】解:根据题意得:144n(n2)180,解得:n10,故选:B【点睛】本题考查了多边形的内角和定理,能根据题意得出方程144n(n2)180是解此题的关键4、C【分析】设这个正多边形的边数为n,正n边形有n个外角,外角和为360,那么边数n=360一个外角的度数【详解】解:这个正多边形的边数为n,正n边形

8、每个外角都是36,n=36036=10故选C【点睛】本题考查的是正多边形的外角和,掌握正多边形的外角和是360度是解题的关键5、B【分析】根据平行四边形的性质先求出B的度数,即可得到答案【详解】解:四边形ABCD是平行四边形,ADBC,B=180-A=150,B:A=5:1,故选B【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补6、D【分析】如图(见解析),先根据等边三角形的定义可得,再根据四边形的内角和即可得【详解】解:如图,是等边三角形,即,故选:D【点睛】本题考查了多边形的内角和、等边三角形,熟练掌握多边形的内角和是解题关键7、C【分析】根据四边形内角

9、和为360及等边三角形的性质可直接进行求解【详解】解:由题意得:等边三角形的三个内角都为60,四边形内角和为360,;故选C【点睛】本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键8、C【分析】作,求得、的长度,即可求解【详解】解:作,如下图:则在平行四边形中,为等腰直角三角形则,解得故选:C【点睛】此题考查了平行四边形的性质,等腰直角三角形的性质以及勾股定理,解题的关键是灵活运用相关性质进行求解9、D【分析】根据多边形外角公式,代入角度求出n即可【详解】外角故多边形边数为9故选D【点睛】本题考查多边形外角公式,掌握该公式是本题解题关键10、B【分

10、析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状【详解】解:,a=b,c=d,四边形四条边长分别是a,b,c,d,其中a,b为对边,c、d是对边,该四边形是平行四边形,故选:B【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键二、填空题1、48【分析】根据题意可得:,再由平行四边形的面积公式整理可得:,根据两个等式可得:,代入平行四边形面积公式即可得【详解】解:ABCD的周长:,于E,于F,整理得:,ABCD的面积:,故答案为:48【点睛】题目主要考查平行四边形的性质及运用方程思想进行求解线段长,理解题意,熟

11、练运用平行四边形的性质及其面积公式是解题关键2、2或82【分析】分别画三角形的三条中位线,根据题意点只能落DM和MN上,分别画出图像,利用折叠的性质和勾股定理解答即可【详解】解:如图,设BC边中点为M,连接DM,当E在DM上时,由折叠可知,CPPE,CDEP,BC9,AC12,C90,AB15,CMBC,CD6,DM,DE6,EM,在RtPEM中,PM2PE2+EM2,(CP)2CP2+()2,CP2; 如图,设AB边的中点为N,连接DN,当E点落在DN上时,BC9,AC12,C90,CD6,DN,由折叠可知,DECD,CDEP90,DECB,CDE90,四边形CDEP是矩形,DECD,四边形

12、DCPE是正方形,CPCD6,此时点落在的延长线上(不符合,舍去)如图,设BC、AB中点分别为M、N,连接MN、DN,当E点落在MN上时,由折叠可知,DECD,CPPE,CDEP90,BC9,AC12,CM,CD6,DN,MN6,在RtDEN中,DE2DN2+EN2,62NE2+()2,NE,EM6,在RtPEM中,PE2EM2+PM2,CP2(CP)2+(6)2,CP;综上所述,CP的值为2或,故答案为:2或【点睛】本题考查翻折变换(折叠问题),熟练掌握直角三角形的性质,折叠的性质,能够分类讨论并画出适合的图形是解题的关键3、【分析】根据平行线的性质可得,由折叠的性质可得,再根据四边形内角和

13、即可求解【详解】解:MFAD,FNDC,由折叠的性质可得,四边形内角和的性质可得,故答案为:【点睛】此题考查了四边形内角和的性质,涉及了平行线以及折叠的性质,解题的关键是灵活运用相关性质进行求解4、112度【分析】如图,作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E,交BC于F,则点即为所求,利用轴对称的性质结合四边形的内角和即可得出答案【详解】解:如图,作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E,交BC于F,则点E,F即为所求 四边形ABCD中, , 由轴对称知,ADE=P,CDF=Q, 在PDQ中,P+Q=180-ADC =, ADE+C

14、DF=P+Q=34, 故答案为【点睛】本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及四边形的内角和定理等知识,根据已知得出E,F的位置是解题关键5、【分析】利用n边形的内角和公式且为整数,多边形外角和为即可解决问题【详解】解:根据边形的内角和可以表示成,可以得到增加条边时,边数变为,则内角和是,因而内角和增加:,外角和不变即:一个多边形的边数增加,则内角和与外角和增加的度数之和是故答案为:【点睛】本题主要考查了多边形的内角和公式和外角和,是需要熟练掌握的内容三、解答题1、18【分析】延长CB至点E,使得BE=DC,然后由题意易证ADCABE,则有DAC=BAE,AC=AE,

15、进而可得CAE=90,最后问题可求解【详解】解:延长CB至点E,使得BE=DC,如图所示:,ADCABE,DAC=BAE,AC=AE,即,ACE是等腰直角三角形,【点睛】本题主要考查全等三角形的性质与判定、等腰直角三角形的判定及多边形内角和,熟练掌握全等三角形的性质与判定、等腰直角三角形的判定及多边形内角和是解题的关键2、(1)CAE=CBD,理由见解析;证明见解析;(2)AE=2CF仍然成立,理由见解析【分析】(1)只需要证明CAECBD即可得到CAE=CBD;先证明CAH=BCF,然后推出BDC=FCD,CAE=CBD=BCF,得到CF=DF,CF=BF,则BD=2CF,再由CAECBD,

16、即可得到AE=2BD=2CF;(2)如图所示延长DC到G使得,DC=CG,连接BG,只需要证明ACEBCG得到AE=BG,再由CF是BDG的中位线,得到BG=2CF,即可证明AE=2CF【详解】解:(1)CAE=CBD,理由如下:在CAE和 CBD中,CAECBD(SAS),CAE=CBD;CFAE,AHC=ACB=90,CAH+ACH=ACH+BCF=90,CAH=BCF,DCF+BCF=90,CDB+CBD=90,CAE=CBD,BDC=FCD,CAE=CBD=BCF,CF=DF,CF=BF,BD=2CF,又CAECBD,AE=2BD=2CF;(2)AE=2CF仍然成立,理由如下:如图所示

17、延长DC到G使得,DC=CG,连接BG,由旋转的性质可得,DCE=ACB=90,ACD+BCD=BCE+BCD,ECG=90,ACD=BCE,ACD+DCE=BCE+ECG,即ACE=BCG,又CE=CD=CG,AC=BC,ACEBCG(SAS),AE=BG,F是BD的中点,CD=CG,CF是BDG的中位线,BG=2CF,AE=2CF【点睛】本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,旋转的性质,三角形中位线定理,熟知全等三角形的性质与判定条件是解题的关键3、(1)见解析;(2),【分析】(1)根据平行四边形的性质及角平分线的性质,证出与是等腰三角形,得出,则可证得结论;(2

18、)根据矩形的判定与性质,结合(1)中的,可证得和是等腰直角三角;由角平分线的性质可得出,从而可证得是等腰直角三角形;根据全等三角形的判定与性质可得出,由对顶角相等可得到,则答案可解【详解】(1)证明:四边形是平行四边形,又BF平分,平分,即(2),是等腰直角三角形证明:四边形是平行四边形,四边形是矩形,由(1)可知,和是等腰直角三角又BF平分,平分,,, ,是等腰直角三角形;由(1)可知,在和中,,,是等腰直角三角形【点睛】本题考查了平行四边形的性质、角平分线的性质、全等三角形的判定与性质以及等腰三角形的判定等知识,灵活运用这些性质是解决本题的关键4、这个内角的度数是148,边数为14【分析】根据多边形内角和定理:且为整数),可得:多边形的内角和一定是的倍数,而多边形的内角一定大于,并且小于,用2012除以180,根据商和余数的情况,求出这个多边形的边数与2的差是多少,即可求出这个多边形的边数,再用这个多边形的内角和减去,求出这个内角的度数是多少即可【详解】解:,这个多边形的边数与2的差是12,这个多边形的边数是:,这个内角的度数是:答:这个内角的度数为,多边形的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论