晋城市重点中学2023学年数学九年级第一学期期末经典试题含解析_第1页
晋城市重点中学2023学年数学九年级第一学期期末经典试题含解析_第2页
晋城市重点中学2023学年数学九年级第一学期期末经典试题含解析_第3页
晋城市重点中学2023学年数学九年级第一学期期末经典试题含解析_第4页
晋城市重点中学2023学年数学九年级第一学期期末经典试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1下列命题正确的是( )A矩形的对角线互相垂直平分B一组对角相等,一组对边平行的四边形一定是平行四边形C正八边形每个内角都是D三角形三边垂直平分线交点到三角形三边距离相等2如图,已知的内接

2、正方形边长为2,则的半径是( )A1B2CD3将一副三角尺(在中,在中,)如图摆放,点为的中点,交于点,经过点,将绕点顺时针方向旋转(),交于点,交于点,则的值为( )ABCD4如图,ABCADE , 则下列比例式正确的是() ABCD5如图是二次函数yax1+bx+c(a0)图象的一部分,对称轴是直线x1关于下列结论:ab0;b14ac0;9a3b+c0;b4a0;方程ax1+bx0的两个根为x10,x14,其中正确的结论有()A1个B3个C4个D5个6在下列命题中,真命题是( )A相等的角是对顶角B同位角相等C三角形的外角和是D角平分线上的点到角的两边相等7一元二次方程的两个根为,则的值是

3、( )A10B9C8D78从拼音“nanhai”中随机抽取一个字母,抽中a的概率为( )ABCD9如图是一个几何体的三视图,这个几何体是( )A三棱锥B三棱柱C长方体D圆柱体10抛物线y=2(x+3)2+5的顶点坐标是()A(3,5)B(3,5)C(3,5)D(3,5)11在RtABC中,C90,若sinA,则cosB()ABCD12一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同从袋中任意摸出一个球,是白球的概率是()ABCD二、填空题(每题4分,共24分)13如图,O与矩形ABCD的边AB、CD分别相交于点E、F、G、H,若AE+CH=6,则BG+DF为_14如图一次

4、函数的图象分别交x轴、y轴于A、B,P为AB上一点且PC为AOB的中位线,PC的延长线交反比例函数的图象于Q,则Q点的坐标为_15在中,则的值是_16如图,起重机臂长,露在水面上的钢缆长,起重机司机想看看被打捞的沉船情况,在竖直平面内把起重机臂逆时针转动到的位置,此时露在水面上的钢缆的长度是_. 17阅读对话,解答问题:分别用、表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,则在(,)的所有取值中使关于的一元二次方程有实数根的概率为_18已知函数的图象如图所示,若矩形的面积为,则_三、解答题(共78分)19(8分)国庆期间,某风景区推出两种旅游观光活动付费方式:若人数不超过20人,人均缴费5

5、00元;若人数超过20人,则每增加一位旅客,人均收费降低10元,但是人均收费不低于350元现在某单位在国庆期间组织一批贡献突出的职工到该景区旅游观光,支付了12000元观光费,请问:该单位一共组织了多少位职工参加旅游观光活动?20(8分) “万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元(1)求11月份这两种水果的进价分别为每千克

6、多少元?(2)时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了%,香橙每千克的进价在11月份的基础上下降了%,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了%,香橙购进的数量比11月份增加了2%,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求的值21(8分)如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90得到线段MN,在CD边上取点P使CPBM,连接N

7、P,BP(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若MCQAMQ,则BM与MC存在怎样的数量关系?请说明理由22(10分)如图甲,在ABC中,ACB=90,AC=4cm,BC=3cm如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s连接PQ,设运动时间为t(s)(0t4),解答下列问题:(1)设APQ的面积为S,当t为何值时,S取得最大值,S的最大值是多少;(2)如图乙,连接PC,将PQC沿QC翻折,得到四边形PQPC,当四边形PQPC为菱形时,求t的值;(3)当t为何值时,APQ是等腰三角形2

8、3(10分)体育文化公司为某学校捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠(1)下列事件是不可能事件的是 A选购乙品牌的D型号 B既选购甲品牌也选购乙品牌C选购甲品牌的A型号和乙品牌的D型号 D只选购甲品牌的A型号(2)写出所有的选购方案(用列表法或树状图);(3)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少?24(10分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不

9、会亏本,且每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示. (1)求与的函数关系式,并写出的取值范围; (2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少? (3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.25(12分)如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.(1)求一次函数的表达式;(2)若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.26一艘运沙船装载着5000m3沙子,到达目的地后开始卸沙,设平均卸沙速度为v(单

10、位:m3/小时),卸沙所需的时间为t(单位:小时)(1)求v关于t的函数表达式,并用列表描点法画出函数的图象;(2)若要求在20小时至25小时内(含20小时和25小时)卸完全部沙子,求卸沙的速度范围参考答案一、选择题(每题4分,共48分)1、B【分析】根据矩形的性质、平行四边形的判定、多边形的内角和及三角形垂直平分线的性质,逐项判断即可【详解】A.矩形的对角线相等且互相平分,故原命题错误;B.已知如图:,求证:四边形ABCD是平行四边形证明:,又,四边形ABCD是平行四边形,一组对角相等,一组对边平行的四边形一定是平行四边形,故原命题正确;C.正八边形每个内角都是:,故原命题错误;D.三角形三

11、边垂直平分线交点到三角形三个顶点的距离相等,故原命题错误故选:B【点睛】本题考查命题的判断,明确矩形性质、平行四边形的判定定理、多边形内角和公式及三角形垂直平分线的性质是解题关键2、C【分析】如图,连接BD,根据圆周角定理可得BD为O的直径,利用勾股定理求出BD的长,进而可得O的半径的长.【详解】如图,连接BD,四边形ABCD是正方形,边长为2,BC=CD=2,BCD=90,BD=2,正方形ABCD是O的内接四边形,BD是O的直径,O的半径是=,故选:C.【点睛】本题考查正方形的性质、圆周角定理及勾股定理,根据圆周角定理得出BD是直径是解题关键.3、C【解析】先根据直角三角形斜边上的中线性质得

12、CD=AD=DB,则ACD=A=30,BCD=B=60,由于EDF=90,可利用互余得CPD=60,再根据旋转的性质得PDM=CDN=,于是可判断PDMCDN,得到=,然后在RtPCD中利用正切的定义得到tanPCD=tan30=,于是可得=【详解】点D为斜边AB的中点,CD=AD=DB,ACD=A=30,BCD=B=60,EDF=90,CPD=60,MPD=NCD,EDF绕点D顺时针方向旋转(060),PDM=CDN=,PDMCDN,=,在RtPCD中,tanPCD=tan30=,=tan30=故选:C【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等

13、于旋转角;旋转前、后的图形全等也考查了相似三角形的判定与性质4、D【解析】ABCADE , ,故选D【点睛】本题考查相似三角形的性质,掌握相似三角形的对应边成比例这一性质是解答此题的关键 5、C【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线开口向下,a0,b4a,ab0,b4a0,错误,正确,抛物线与x轴交于4,0处两点,b14ac0,方程ax1+bx0的两个根为x10,x14,正确,当x3时y0,即9a3b+c0,正确,故正确的有故选:C【点睛】本题主要考查图象与二次函数

14、系数之间的关系,会利用对称轴的范围求1a与b的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用6、C【分析】根据对顶角的定义、同位角的定义、三角形的外角和、角平分线的性质逐项判断即可.【详解】A、由对顶角的定义“如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角”可得,对顶角必相等,但相等的角未必是对顶角,此项不是真命题B、只有当两直线平行,同位角必相等,此项不是真命题C、根据内角和定理可知,任意多边形的外角和都为,此项是真命题D、由角平分线的性质可知,角平分线上的点到角的两边距离相等,此项不是真命题故选:C.【点睛】本题考查了对顶角的

15、定义、同位角的定义、三角形的外角和、角平分线的性质,熟记各定义和性质是解题关键.7、D【分析】利用方程根的定义可求得,再利用根与系数的关系即可求解【详解】为一元二次方程的根,根据题意得,故选:D【点睛】本题主要考查了一元二次方程的解,根与系数的关系以及求代数式的值,熟练掌握根与系数的关系,是解题的关键8、B【解析】nanhai共有6个拼音字母,a有2个,根据概率公式可得答案【详解】nanhai共有6个拼音字母,a有2个,抽中a的概率为,故选:B【点睛】此题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情况数之比9、B【解析】试题解析:根据三视图的知识,主视图为三角形,左视图为一个矩形

16、,俯视图为两个矩形,故这个几何体为三棱柱故选B.10、B【解析】解:抛物线y=2(x+3)2+5的顶点坐标是(3,5),故选B11、A【分析】根据正弦和余弦的定义解答即可.【详解】解:如图,在RtABC中,C90,sinA,cosB,cosB故选:A【点睛】本题考查了锐角三角函数的定义,属于应知应会题型,熟练掌握锐角三角函数的概念是解题关键.12、A【分析】由题意可得,共有10种等可能的结果,其中从口袋中任意摸出一个球是白球的有5种情况,利用概率公式即可求得答案【详解】解:从装有2个黄球、3个红球和5个白球的袋中任意摸出一个球有10种等可能结果,其中摸出的球是白球的结果有5种,从袋中任意摸出一

17、个球,是白球的概率是,故选A【点睛】此题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率所求情况数与总情况数之比二、填空题(每题4分,共24分)13、6【分析】作EMBC,HNAD,易证得,继而证得,利用等量代换即可求得答案.【详解】过E作EMBC于M,过H作HNAD于N,如图,四边形ABCD为矩形,ADBC, ,四边形ABCD为矩形,且EMBC,HNAD,四边形ABME 、EMHN、NHCD均为矩形,AE=BM,EN=MH,ND=HC,在和中,(HL) ,故答案为:【点睛】本题考查了矩形的判定和性质、直角三角形的判定和性质、平行弦所夹的弧相等、等弧对等弦等知识,灵活运用等

18、量代换是解题的关键.14、 (2,)【解析】因为三角形OQC的面积是Q点的横纵坐标乘积的一半,所以可求出k的值,PC为中位线,可求出C的横坐标,也是Q的横坐标,代入反比例函数可求出纵坐标【详解】解:设A点的坐标为(a,0),B点坐标为(0,b),分别代入,解方程得a=4,b=-2,A(4,0),B(0,-2)PC是AOB的中位线,PCx轴,即QCOC,又Q在反比例函数的图象上,2SOQC=k,k23, PC是AOB的中位线,C(2,0),可设Q(2,q)Q在反比例函数的图象上,q,点Q的坐标为(2,)点睛:本题考查反比例函数的综合运用,关键是知道函数上面取点后所得的三角函数的面积和点的坐标之间

19、的关系15、【分析】直接利用正弦的定义求解即可【详解】解:如下图,在中,故答案为:【点睛】本题考查的知识点是正弦的定义,熟记定义内容是解此题的关键16、30m【解析】首先在RtABC中,利用正弦值可推出CAB=45,然后由转动角度可得出CAB=60,在RtCAB中利用60的正弦即可求出B C【详解】再RtABC中,CAB=45起重机臂逆时针转动到的位置后,CAB=CAB+15=60在RtCAB中,B C=m故答案为:30m【点睛】本题考查了解直角三角形,熟练掌握直角三角形中的边角关系是解题的关键17、【解析】试题分析:用列表法易得(a,b)所有情况,看使关于x的一元二次方程x3-ax+3b=3

20、有实数根的情况占总情况的多少即可试题解析:(a,b)对应的表格为:方程x3-ax+3b=3有实数根,=a3-8b3使a3-8b3的(a,b)有(3,3),(4,3),(4,3),p(3)=考点:3列表法与树状图法;3根的判别式18、-6【分析】根据题意设AC=a,AB=b 解析式为y=A点的横坐标为-a,纵坐标为b,因为AB*AC=6,k=xy=- AB*AC=-6【详解】解:由题意得设AC=a,AB=b 解析式为y=AB*AC=ab=6A(-a,b) b= k=-ab=-6【点睛】此题主要考查了反比例函数与几何图形的结合,注意A点的横坐标的符号.三、解答题(共78分)19、30【分析】设该单

21、位一共组织了x位职工参加旅游观光活动,求出当人数为20时的总费用及人均收费10元时的人数,即可得出20 x1,再利用总费用人数人均收费,即可得出关于x的一元二次方程,解之取其较小值即可得出结论【详解】解:设该单位一共组织了x位职工参加旅游观光活动,5002010000(元),1000012000,(50010)15(人),120001034(人),34不为整数,20 x20+15,即20 x1依题意,得:x50010(x20)12000,整理,得:x270 x+12000,解得:x130,x240(不合题意,舍去)答:该单位一共组织了30位职工参加旅游观光活动【点睛】本题考查了一元二次方程的应

22、用,正确理解题意,找准题中等量关系列出方程是解题的关键.20、(1)11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)m的值为49.1【解析】(1)设11月份红桔的进价为每千克x元,香橙的进价为每千克y元,依题意有, 解得,答:11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)依题意有:8(1m%)400(1+m%)+20(1m%)100(1+2m%)=15200,解得m1=0(舍去),m2=49.1,故m的值为49.121、(1)证明见解析;(2)BM=MC理由见解析【分析】(1)根据正方形的性质可得AB=BC,ABC=C,然后利用“边角边”证明ABM和BCP全等

23、,根据全等三角形对应边相等可得AM=BP,BAM=CBP,再求出AMBP,从而得到MNBP,然后根据一组对边平行且相等的四边形是平行四边形证明即可;(2)根据同角的余角相等求出BAM=CMQ,然后求出ABM和MCQ相似,根据相似三角形对应边成比例可得,再求出AMQABM,根据相似三角形对应边成比例可得,从而得到,即可得解【详解】(1)证明:在正方形ABCD中,AB=BC,ABC=C,在ABM和BCP中,ABMBCP(SAS),AM=BP,BAM=CBP,BAM+AMB=90,CBP+AMB=90,AMBP,AM并将线段AM绕M顺时针旋转90得到线段MN,AMMN,且AM=MN, MNBP,四边

24、形BMNP是平行四边形;(2)解:BM=MC理由如下:BAM+AMB=90,AMB+CMQ=90,BAM=CMQ,又ABC=C=90,ABMMCQ,MCQAMQ,AMQABM,BM=MC22、 (1)当t为秒时,S最大值为;(1); (3)或或【分析】(1)过点P作PHAC于H,由APHABC,得出,从而求出AB,再根据,得出PH=3t,则AQP的面积为:AQPH=t(3t),最后进行整理即可得出答案;(1)连接PP交QC于E,当四边形PQPC为菱形时,得出APEABC,求出AE=t+4,再根据QE=AEAQ,QE=QC得出t+4=t+1,再求t即可;(3)由(1)知,PD=t+3,与(1)同

25、理得:QD=t+4,从而求出PQ=,在APQ中,分三种情况讨论:当AQ=AP,即t=5t,当PQ=AQ,即=t,当PQ=AP,即=5t,再分别计算即可【详解】解:(1)如图甲,过点P作PHAC于H,C=90,ACBC,PHBC,APHABC,AC=4cm,BC=3cm,AB=5cm,PH=3t,AQP的面积为:S=AQPH=t(3t)=(t)1+,当t为秒时,S最大值为cm1(1)如图乙,连接PP,PP交QC于E,当四边形PQPC为菱形时,PE垂直平分QC,即PEAC,QE=EC,APEABC,AE=t+4QE=AEAQt+4t=t+4,QE=QC=(4t)=t+1,t+4=t+1,解得:t=

26、,04,当四边形PQPC为菱形时,t的值是s;(3)由(1)知,PD=t+3,与(1)同理得:QD=ADAQ=t+4PQ=,在APQ中,当AQ=AP,即t=5t时,解得:t1=;当PQ=AQ,即=t时,解得:t1=,t3=5;当PQ=AP,即=5t时,解得:t4=0,t5=;0t4,t3=5,t4=0不合题意,舍去,当t为s或s或s时,APQ是等腰三角形【点睛】本题考查相似形综合题23、(1)D;(2)见解析;(3)【分析】(1)根据不可能事件和随机随机的定义进行判断;(2)画树状图展示所有6种等可能的结果数;(3)找出A型器材被选中的结果数,然后根据概率公式求解【详解】(1)只选购甲品牌的A型号为不可能事件故答案为D;(2)画树状图为:共有6种等可能的结果数;(3)A型器材被选中的结果数为2,所以A型器材被选中的概率= 【点睛】此题考查列表法与树状图法,解题关键在于利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率24、(1)();(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚. 【解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论