版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1函数y=ax+b和y=ax2+bx+c(a0)在同一个坐标系中的图象可能为()ABCD2如图,是抛物线的图象,根据图象信息分析下列结论:;.其中正确的结论是( )ABCD3若将抛物线y=- x2先向左平移3个单位,再向下平移2个单位,得到新的抛物线,则新
2、抛物线的表达式是( )ABCD4下列四个函数图象中,当x0时,函数值y随自变量x的增大而减小的是()ABCD5已知二次函数yax2+bx+c(a0)的图象如图所示,则下列结论: abc0; 2ab0; b24ac0; 9a+3b+c0; c+8a0.正确的结论有().A1个B2个C3个D4个6把二次函数配方后得( )ABCD7在正方形、矩形、菱形、平行四边形中,其中是中心对称图形的个数为()ABCD8如图,ABCD的对角线AC,BD交于点O,CE平分BCD交AB于点E,交BD于点F,且ABC60,AB2BC,连接OE下列结论:EOAC;SAOD4SOCF;AC:BD:7;FB2OFDF其中正确
3、的是( )ABCD9如图,已知直线与轴交于点,与轴交于点,将沿直线翻折后,设点的对应点为点,双曲线经过点,则的值为( )A8B6CD10如图,在ABC中,若DEBC,AD=5,BD=10,DE=4,则BC的值为( )A8B9C10D12二、填空题(每小题3分,共24分)11某架飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y60tt2,这架飞机着陆后滑行最后150m所用的时间是_s12白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_个飞机场13已知为锐角,且,则度数等于_度.14如图,二次函数的图象与x轴交于A,
4、B两点,与y轴交于点C,对称轴与x轴交于点D,若点P为y轴上的一个动点,连接PD,则的最小值为_.15如图,抛物线y(x+1)(x9)与坐标轴交于A、B、C三点,D为顶点,连结AC,BC点P是该抛物线在第一象限内上的一点过点P作y轴的平行线交BC于点E,连结AP交BC于点F,则的最大值为_16二次函数的顶点坐标是_17若反比例函数y的图象与一次函数yx+3的图象的一个交点到x轴的距离为1,则k_18如图,在O中,弦AB,CD相交于点P,A42,APD77,则B=_三、解答题(共66分)19(10分)为了解九年级学生的体能状况,从我县某校九年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果
5、分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题;(1)求本次测试共调查了多少名学生?并在答题卡上补全条形统计图;(2)经测试,全年级有4名学生体能特别好,其中有1名女生,学校准备从这4名学生中任选两名参加运动会,请用列表或画树状图的方法求出女生被选中的概率.20(6分)如图,外接,点在直径的延长线上,(1)求证:是的切线;(2)若,求的半径21(6分)解方程(1)2x26x10(2)(x+5)26(x+5)22(8分)如图1是实验室中的一种摆动装置,在地面上,支架是底边为的等腰直角三角形,摆动臂可绕点旋转,(1)在旋转过程中当、三点在同一直线上时,求的长,当、三点为同一直角三
6、角形的顶点时,求的长(2)若摆动臂顺时针旋转,点的位置由外的点转到其内的点处,如图2,此时,求的长(3)若连接(2)中的,将(2)中的形状和大小保持不变,把绕点在平面内自由旋转,分别取、的中点、,连接、随着绕点在平面内自由旋转, 的面积是否发生变化,若不变,请直接写出的面积;若变化,的面积是否存在最大与最小?若存在,请直接写出面积的最大值与最小值,(温馨提示)23(8分)如图,一次函数y=kxb与反比例函数y=的图象相交于A(2,4)、B(4,n)两点 (1)分别求出一次函数与反比例函数的表达式; (2)根据所给条件,请直接写出不等式kxb的解集 ; (3)过点B作BCx轴,垂足为点C,连接A
7、C,求SABC24(8分)如图所示,某学校有一边长为20米的正方形区域(四周阴影是四个全等的矩形,记为区域甲;中心区是正方形,记为区域乙)区域甲建设成休闲区,区域乙建成展示区,已知甲、乙两个区域的建设费用如下表:区域甲乙价格(百元米2)65设矩形的较短边的长为米,正方形区域建设总费用为百元(1)的长为 米(用含的代数式表示);(2)求关于的函数解析式;(3)当中心区的边长要求不低于8米且不超过12米时,预备建设资金220000元够用吗?请利用函数的增减性来说明理由25(10分)关于x的方程x11(k1)x+k10有两个实数根x1、x1(1)求k的取值范围;(1)若x1+x11x1x1,求k的值
8、26(10分)如图,四边形是平行四边形,、是对角线上的两个点,且求证:参考答案一、选择题(每小题3分,共30分)1、D【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数ax2+bx+c的图象相比较看是否一致【详解】解:A由一次函数的图象可知a0,b0,由抛物线图象可知,开口向上,a0,对称轴x=0,b0;两者相矛盾,错误;B由一次函数的图象可知a0,b0,由抛物线图象可知a0,两者相矛盾,错误;C由一次函数的图象可知a0,b0,由抛物线图象可知a0,两者相矛盾,错误;D由一次函数的图象可知a0,b0,由抛物线图象可知a0,对称轴x=0,b0;正确故选D【点睛】解决此类问
9、题步骤一般为:(1)根据图象的特点判断a取值是否矛盾;(2)根据二次函数图象判断其顶点坐标是否符合要求2、D【分析】采用数形结合的方法解题,根据抛物线的开口方向,对称轴,与x、y轴的交点,通过推算进行判断【详解】根据抛物线对称轴可得 ,正确;当 , ,根据二次函数开口向下和得, 和 ,所以,正确;二次函数与x轴有两个交点,故 ,正确;由题意得,当 和 时,y的值相等,当, ,所以当, ,正确;故答案为:D【点睛】本题考查了二次函数的性质和判断,掌握二次函数的性质是解题的关键3、A【分析】按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.【详解】 将抛物线先向左平移3个单位
10、,再向下平移2个单位,y=-(x+3)2-2.故答案为A.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k(a,b,c为常数,a0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移; k值正上移,负下移”4、C【分析】直接根据图象判断,当x0时,从左到右图象是下降的趋势的即为正确选项.【详解】A、当x0时,y随x的增大而增大,错误;B、当x0时,y随x的增大而增大,错误;C、当x0时,y随x的增大而减小,正确;D、当x0时,y随x的增大先减小而后增大,错误;故选:C【点睛】本题主要考查根据函数图象判断增减性,掌握函数的图象和
11、性质是解题的关键.5、C【解析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线开口向下,得:a0;抛物线的对称轴为x=-=1,则b=-2a,2a+b=0,b=-2a,故b0;抛物线交y轴于正半轴,得:c0.abc0, 正确;2a+b=0,正确;由图知:抛物线与x轴有两个不同的交点,则=b2-4ac0,故错误;由对称性可知,抛物线与x轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故错误;观察图象得当x=-2时,y0,即4a-2b+c0b=-2a,4a+4a
12、+c0即8a+c0,故正确.正确的结论有,故选:C【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用6、B【分析】运用配方法把一般式化为顶点式即可【详解】解:=故选:B【点睛】本题考查的是二次函数的三种形式,正确运用配方法把一般式化为顶点式是解题的关键7、D【解析】根据中心对称图形的定义:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可直接选出答案【详解】在正方形、矩形、菱形、平行四边形中,其中都是中心对称图形,故共有个中心对称图形故选D【点睛】本题考查了中心
13、对称图形,正确掌握中心对称图形的性质是解题的关键8、B【分析】正确只要证明EC=EA=BC,推出ACB=90,再利用三角形中位线定理即可判断错误想办法证明BF=2OF,推出SBOC=3SOCF即可判断正确设BC=BE=EC=a,求出AC,BD即可判断正确求出BF,OF,DF(用a表示),通过计算证明即可【详解】解:四边形ABCD是平行四边形,CDAB,OD=OB,OA=OC,DCB+ABC=180,ABC=60,DCB=120,EC平分DCB,ECB=DCB=60,EBC=BCE=CEB=60,ECB是等边三角形,EB=BC,AB=2BC,EA=EB=EC,ACB=90,OA=OC,EA=EB
14、, OEBC,AOE=ACB=90,EOAC,故正确,OEBC,OEFBCF, ,OF=OB,SAOD=SBOC=3SOCF,故错误,设BC=BE=EC=a,则AB=2a,AC=a,OD=OB=a,BD=a,AC:BD=a:a=:7,故正确,OF=OB=a,BF=a,BF2=a2,OFDF=a a2,BF2=OFDF,故正确,故选:B【点睛】此题考查相似三角形的判定和性质,平行四边形的性质,角平分线的定义,解直角三角形,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题9、A【分析】作轴于,轴于,设依据直线的解析式即可得到点和点的坐标,进而得出,再根据勾股定理即可得到,进而得出,即可得
15、到的值【详解】解:作轴于,轴于,如图,设,当时,则,当时,解得,则,沿直线翻折后,点的对应点为点,在中,在中,-得,把代入得,解得,故选A【点睛】此题考查反比例函数图象上点的坐标特征,解题关键在于掌握反比例函数(为常数,)的图象是双曲线,图象上的点的横纵坐标的积是定值,即10、D【解析】试题分析:由DEBC可推出ADEABC,所以.因为AD=5,BD=10,DE=4,所以,解得BC=1故选D.考点:相似三角形的判定与性质二、填空题(每小题3分,共24分)11、1【解析】由于飞机着陆,不会倒着跑,所以当y取得最大值时,t也取得最大值,求得t的取值范围,然后解方程即可得到结论【详解】当y取得最大值
16、时,飞机停下来,则y=60t-t2=-(t-20)2+600,此时t=20,飞机着陆后滑行600米才能停下来因此t的取值范围是0t20;即当y=600-150=450时,即60t-t2=450,解得:t=1,t=30(不合题意舍去),滑行最后的150m所用的时间是20-1=1,故答案是:1【点睛】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件12、1【分析】设共有x个飞机场,每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线等量关系为:,把相关数值代入求正数解即可【详解】设共有x个飞机场,解得 , (不合题意,舍去),故答案为:1【点睛】本题考查了一
17、元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键13、30【分析】根据锐角三角函数值即可得出角度.【详解】,为锐角=30故答案为30.【点睛】此题主要考查根据锐角三角函数值求角度,熟练掌握,即可解题.14、【分析】连接AC,连接CD,过点A作AECD交于点E,则AE为所求.由锐角三角函数的知识可知PC=PE,然后通过证明CDOAED,利用相似三角形的性质求解即可.【详解】解:连接AC,连接CD,过点A作AECD交于点E,则AE为所求.当x=0时,y=3,C(0,3).当y=0时,0=-x2+2x+3,x1=3,x2=-1,A(-1,0)、B(3,0),OA=1,OC=3,AC=, 二
18、次函数y=-x2+2x+3的对称轴是直线x=1,D(1,0),点A与点D关于y轴对称,sinACO=,由对称性可知,ACO=OCD,PA=PD,CD= AC=,sinOCD=,sinOCD=,PC=PE,PA=PD,PC+PD=PE+PA,CDO=ADE, COD=AED,CDOAED,;故答案为.【点睛】本题考查了二次函数的图像与性质,二次函数与坐标轴的交点,锐角三角函数的知识,勾股定理,轴对称的性质,相似三角形的判定与性质等知识,难度较大,属中考压轴题.15、【分析】根据抛物线的解析式求得A、B、C的坐标,进而求得AB、BC、AC的长,根据待定系数法求得直线BC的解析式,作PNBC,垂足为
19、N先证明PNEBOC,由相似三角形的性质可知PN=PE,然后再证明PFNAFC,由相似三角形的性质可得到PF:AF与m的函数关系式,从而可求得的最大值【详解】抛物线y=(x+1)(x9)与坐标轴交于A、B、C三点,A(1,0),B(9,0),令x=0,则y=1,C(0,1),BC,设直线BC的解析式为y=kx+b将B、C的坐标代入得:,解得k=,b=1,直线BC的解析式为y=x+1设点P的横坐标为m,则纵坐标为(m+1)(m9),点E(m,m+1),PE=(m+1)(m9)(m+1)=m2+1m作PNBC,垂足为NPEy轴,PNBC,PNE=COB=90,PEN=BCOPNEBOC=PN=PE
20、=(-m2+1m)AB2=(9+1)2=100,AC2=12+12=10,BC2=90,AC2+BC2=AB2BCA=90,又PFN=CFA,PFNAFC=m2+m=(m)2+,当m时,的最大值为故答案为:【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数图象上点的坐标特征、一次函数的解析式、等腰三角形的性质、勾股定理的应用以及相似三角形的证明与性质,求得与m的函数关系式是解题的关键16、(2,1)【分析】将解析式化为顶点式即可顶点答案.【详解】,二次函数的顶点坐标是(2,1),故答案为:(2,1).【点睛】此题考查二次函数的一般式化为顶点式的方法,顶点式解析式中各字母的意
21、义,正确转化解析式的形式是解题的关键.17、2或1【分析】分反比例函数y在第一象限和第四象限两种情况解答【详解】解:当反比例函数y在第一象限时,x+31,解得x2,即反比例函数y的图象与一次函数yx+3的图象交于点(2,1),k212;当反比例函数y在第四象限时,x+31,解得x1,即反比例函数y的图象与一次函数yx+3的图象交于点(1,1),k1(1)1k2或1故答案为:2或1【点睛】本题主要考察反比例函数和一次函数的交点问题,分象限情况作答是解题关键.18、35【分析】由同弧所对的圆周角相等求得A=D=42,根据三角形内角与外角的关系可得B的大小【详解】同弧所对的圆周角相等求得D=A=42
22、,且APD77是三角形PBD外角,B=APDD=35,故答案为:35【点睛】此题考查圆周角定理及其推论,解题关键明确三角形内角与外角的关系三、解答题(共66分)19、 (1)共调查了50名学生,补图见解析;(2).【分析】(1)设本次测试共调查了名学生,根据总体、个体、百分比之间的关系列出方程即可解决.用总数减去、中的人数,即可解决,画出条形图即可.(2)画树状图展示所有12种等可能的结果数,再找出恰好抽到有1名女生的结果数,然后根据概率公式计算.【详解】解:(1)设本次测试共调查了名学生.由题意,解得:本次测试共调查了50名学生.则测试结果为等级的学生数人.条形统计图如图所示,(2)画树状图
23、:共有12种等可能的结果数,其中恰好抽到有1名女生的结果数6,所以恰好抽到有1名女生的概率.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选出符合事件或的结果数目,然后利用概率公式计算事件或事件的概率也考查了统计图解题的关键是灵活运用这些知识解决问题20、(1)见解析;(2),见解析【分析】(1)根据AB是直径证得CAD+ABD=90,根据半径相等及证得ODB+BDC=90,即可得到结论;(2)利用证明ACDDCB,求出AC,即可得到答案.【详解】(1)AB是直径,ADB=90,CAD+ABD=90,OB=OD,ABD=ODB,ODB+BDC=90,即OD
24、CD,是的切线;(2),C=C,ACDDCB,AC=4.5,的半径=.【点睛】此题考查切线的判定定理,相似三角形的判定及性质定理,圆周角定理,正确理解题意是解题的关键.21、(1);(2)x5或x1【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得【详解】(1)a=2,b=6,c=1,=(6)242(1)=440,则x;(2)(x+5)26(x+5)=0,(x+5)(x1)=0,则x+5=0或x1=0,解得:x=5或x=1【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解答本
25、题的关键22、(1)或;长为或;(2);(3)的面积会发生变化;存在,最大值为:,最小值为:【分析】(1)分两种情形分别求解即可;显然不能为直角;当为直角时,根据计算即可;当为直角时,根据计算即可;(2)连接,证得为等腰直角三角形,根据SAS可证得,根据条件可求得,根据勾股定理求得,即可求得答案;(3)根据三角形中位线定理,可证得是等腰直角三角形,求得,当取最大时,面积最大,当取最小时,面积最小,即可求得答案【详解】(1),或;显然不能为直角;当为直角时,即,解得:;当为直角时, 即,;综上:长为或;(2)如图,连接, 根据旋转的性质得:为等腰直角三角形,在和中,又,;(3)发生变化,存在最大值和最小值,理由:如图,点P,M分别是,的中点,点N,P分别是,的中点,是等腰三角形,是等腰直角三角形;,当取最大时,面积最大,当取最小时,面积最小,故:的面积发生变化,存在最大值和最小值,最大值为:,最小值为:【点睛】本题是几何变换综合题,考查了等腰直角三角形的性质,勾股定理,全等三角形的判定和性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,有一定的难度23、(1);(2)或;(3)6【分析】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论