版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每题4分,共48分)1小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数(t的单位:
2、s,h的单位:m)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( )A171sB171sC163sD136s2已知的半径为,点到直线的距离为,若直线与公共点的个数为个,则可取( )ABCD3若直线与半径为5的相离,则圆心与直线的距离为( )ABCD4数据1,3,3,4,5的众数和中位数分别为( )A3和3B3和3.5C4和4D5和3.55矩形的长为4,宽为3,它绕矩形长所在直线旋转一周形成几何体的全面积是( )A24B33C56D426孙子算经是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问
3、竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A五丈B四丈五尺C一丈D五尺7如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上且A(3,0),B(2,b),则正方形ABCD的面积是( )A20B16C34D258如图,点的坐标分别为和,抛物线的顶点在线段上运动,与轴交于两点(在的左侧),若点的横坐标的最小值为0,则点的横坐标最大值为( )A6B7C8D99公元三世纪,我国汉代数学家赵爽在注解周髀算经时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小
4、正方形拼成的一个大正方形如果大正方形的面积是125,小正方形面积是25,则( )ABCD10下列说法正确的是( )A菱形都是相似图形B矩形都是相似图形C等边三角形都是相似图形D各边对应成比例的多边形是相似多边形11如图,已知和是以点为位似中心的位似图形,且和的周长之比为,点的坐标为,则点的坐标为( )ABCD12计算:tan45sin30()ABCD二、填空题(每题4分,共24分)13将抛物线先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的解析式是_.14工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔
5、的宽口AB的长度为_mm15如图,在等腰中,点是以为直径的圆与的交点,若,则图中阴影部分的面积为_16如图示,在中,点在内部,且,连接,则的最小值等于_.17二次函数的图象如图所示,则点在第_象限.18如图所示的的方格纸中,如果想作格点与相似(相似比不能为1),则点坐标为_.三、解答题(共78分)19(8分)先阅读下列材料,然后解后面的问题材料:一个三位自然数 (百位数字为a,十位数字为b,个位数字为c),若满足a+c=b,则称这个三位数为“欢喜数”,并规定F()=ac如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,F(374)=34=1(1)对于“欢
6、喜数”,若满足b能被9整除,求证:“欢喜数”能被99整除;(2)已知有两个十位数字相同的“欢喜数”m,n(mn),若F(m)F(n)=3,求mn的值20(8分)如图,一次函数图象经过点,与轴交于点,且与正比例函数的图象交于点,点的横坐标是.请直接写出点的坐标(, );求该一次函数的解析式;求的面积.21(8分)先化简,再求值:,其中.22(10分)解方程:5x(x+1)2(x+1)23(10分)如图,抛物线y=x2 +bx+c与x轴交于A(1,0),B(3,0)两点(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什
7、么位置时,满足SPAB=8,并求出此时P点的坐标24(10分)某商场为了方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯如图所示,已知原阶梯式扶梯AB长为10m,坡角ABD30;改造后斜坡式自动扶梯的坡角ACB9,请计算改造后的斜坡AC的长度,(结果精确到0.01(sin90.156,cos90.988,tan90.158)25(12分)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、2、3、4,这些卡片除数字外都相同王兴从口袋中随机抽取一张卡片,钟华从剩余的三张卡片中随机抽取一张,求两张卡片上数字之积(1)请你用画树状图或列表的方法,列出两人抽到的数字之积所有可能的结果(
8、2)求两人抽到的数字之积为正数的概率26已知关于x的一元二次方程(a+c)x2+2bx+a-c=0,其中a、b、c分别为ABC三边的长(1)若方程有两个相等的实数根,试判断ABC的形状,并说明理由;(2)若ABC是正三角形,试求这个一元二次方程的根参考答案一、选择题(每题4分,共48分)1、D【分析】找重心最高点,就是要求这个二次函数的顶点,应该把一般式化成顶点式后,直接解答.【详解】解:h=3.5t-4.9t2=-4.9(t-)2+,-4.91当t=1.36s时,h最大故选D.【点睛】此题主要考查了二次函数的应用,根据题意得出顶点式在解题中的作用是解题关键.2、A【分析】根据直线和圆的位置关
9、系判断方法,可得结论【详解】直线m与O公共点的个数为2个,直线与圆相交,d半径,d3,故选:A【点睛】本题考查了直线与圆的位置关系,掌握直线和圆的位置关系判断方法:设O的半径为r,圆心O到直线l的距离为d:直线l和O相交dr直线l和O相切d=r,直线l和O相离dr3、B【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可.【详解】解:直线与半径为5的相离,圆心与直线的距离满足:.故选:B.【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d,圆的半径为r,当dr时,直线与圆相离;当d=r时,直线与圆相切;当dr时,直线与圆相交.4、A【分析】根据众数和中位
10、数的定义:一般来说,一组数据中,出现次数最多的数就叫这组数据的众数;把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;即可得解.【详解】由已知,得该组数据中,众数为3,中位数为3,故答案为A.【点睛】此题主要考查对众数、中位数概念的理解,熟练掌握,即可解题.5、D【分析】旋转后的几何体是圆柱体,先确定出圆柱的底面半径和高,再根据圆柱的表面积公式计算即可求解【详解】解:324322241842(cm2);故选:D【点睛】本题主要考查的是点、线、面、体,根据图形确定出圆柱的底面半径和高的长是解题的关键6、B【分析】根据同一时刻物高与影长成正比可得出结论【详
11、解】设竹竿的长度为x尺,竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,解得x=45(尺),故选B【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物高与影长成正比是解答此题的关键7、C【分析】作BMx轴于M只要证明DAOABM,推出OABM,AMOD,由A(3,0),B(2,b),推出OA3,OM2,推出ODAM5,再利用勾股定理求出AD即可解决问题【详解】解:作轴于四边形是正方形,在和中,正方形的面积,故选:【点睛】本题考查正方形的性质、坐标与图形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线构造全等三角形解决问题,属于中考常
12、考题型8、B【分析】根据待定系数法求得顶点是A时的解析式,进而即可求得顶点是B时的解析式,然后求得与x轴的交点即可求得【详解】解:点C的横坐标的最小值为0,此时抛物线的顶点为A,设此时抛物线解析式为y=a(x-1)2+1,代入(0,0)得,a+1=0,a=-1,此时抛物线解析式为y=-(x-1)2+1,抛物线的顶点在线段AB上运动,当顶点运动到B(5,4)时,点D的横坐标最大,抛物线从A移动到B后的解析式为y=-(x-5)2+4,令y=0,则0=-(x-5)2+4,解得x=1或3,点D的横坐标最大值为1故选:B【点睛】本题考查了待定系数法求二次函数的解析式以及二次函数的性质,明确顶点运动到B(
13、5,4)时,点D的横坐标最大,是解题的关键9、A【分析】根据正方形的面积公式可得大正方形的边长为,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解【详解】解:大正方形的面积是125,小正方形面积是25,大正方形的边长为,小正方形的边长为5,故选A【点睛】本题考查了解直角三角形、勾股定理的证明和正方形的面积,难度适中,解题的关键是正确得出10、C【分析】利用相似图形的定义分别判断后即可确定正确的选项【详解】解:A、菱形的对应边成比例,但对应角不一定相等,故错误,不符合题意;B、矩形的对应角相等,但对应边不一定成比例,故错误,不符合题意;C、等边三角形的对应边成比例,对应角相等,故正确,
14、符合题意;D、各边对应成比例的多边形的对应角不一定相等,故错误,不符合题意,故选:C【点睛】考查了相似图形的定义,解题的关键是牢记相似多边形的定义,难度较小11、A【分析】设位似比例为k,先根据周长之比求出k的值,再根据点B的坐标即可得出答案【详解】设位似图形的位似比例为k则和的周长之比为,即解得又点B的坐标为点的横坐标的绝对值为,纵坐标的绝对值为点位于第四象限点的坐标为故选:A【点睛】本题考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键12、C【解析】代入45角的正切函数值和30角的正弦函数值计算即可【详解】解:原式=故选C【点睛】熟记“45角的正切函数值和30角的正弦函数值”是正
15、确解答本题的关键二、填空题(每题4分,共24分)13、【分析】先确定抛物线y=x1的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移所得对应点的坐标为(1,1),然后根据顶点式写出新抛物线解析式【详解】解:抛物线y=x1的顶点坐标为(0,0),点(0,0)先向右平移1个单位长度,再向上平移1个单位长度所得对应点的坐标为(1,1),所以新抛物线的解析式为y=(x-1)1+1故答案为y=(x-1)1+1【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解
16、析式;二是只考虑平移后的顶点坐标,即可求出解析式14、8【分析】先根据钢珠的直径求出其半径,再构造直角三角形,求出小圆孔的宽口AB的长度的一半,最后乘以2即为所求【详解】连接OA,过点O作ODAB于点D,则AB=2AD,钢珠的直径是10mm,钢珠的半径是5mm钢珠顶端离零件表面的距离为8mm,OD=3mm在RtAOD中,mm,AB=2AD=24=8mm【点睛】本题是典型的几何联系实际应用题,熟练运用垂径定理是解题的关键15、【分析】取AB的中点O,连接OD,根据圆周角定理得出,根据阴影部分的面积扇形BOD的面积进行求解【详解】取AB的中点O,连接OD,在等腰中,阴影部分的面积扇形BOD的面积,
17、故答案为:【点睛】本题考查了圆周角定理,扇形面积计算公式,通过作辅助线构造三角形与扇形是解题的关键16、【分析】首先判定直角三角形CAB=30,ABC=60,然后根据,得出ACB+PAC+PBC=APB=120,定角定弦,点P的轨迹是以AB为弦,圆周角为120的圆弧上,如图所示,当点C、O、P在同一直线上时,CP最小,构建圆,利用勾股定理,即可得解.【详解】,CAB=30,ABC=60,PAB+PAC=30ACB+PAC+PBC=APB=120定角定弦,点P的轨迹是以AB为弦,圆周角为120的圆弧上,如图所示,当点C、O、P在同一直线上时,CP最小COAB,COB=60,ABO=30OB=2,
18、OBC=90故答案为.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P的位置.17、四【分析】有二次函数的图象可知:,进而即可得到答案.【详解】二次函数的图象与x轴有两个交点,抛物线的对称轴在y轴的左侧,即:,点在第四象限,故答案是:四【点睛】本题主要考查二次函数图象与性质,掌握二次函数图象与二次函数解析式的系数之间的关系,是解题的关键.18、(5,2)或(4,4)【分析】要求ABC与OAB相似,因为相似比不为1,由三边对应相等的两三角形全等,知OAB的边AB不能与ABC的边AB对应,则AB与AC对应或者AB与BC对应并且此时AC或者BC是斜边,分两种情况分析即可【详解】解:
19、根据题意得:OA=1,OB=2,AB=,当AB与AC对应时,有或者,AC=或AC=5,C在格点上,AC=(不合题意),则AC=5,如图:C点坐标为(4,4)同理当AB与BC对应时,可求得BC=或者BC=5,也是只有后者符合题意,如图:此时C点坐标为(5,2)C点坐标为(5,2)或(4,4)故答案为:(5,2)或(4,4)【点睛】本题结合坐标系,重点考查了相似三角形的判定的理解及运用三、解答题(共78分)19、(1)详见解析;(2)99或2【解析】(1)首先由题意可得a+c=b,将欢喜数展开,因为要证明“欢喜数”能被99整除,所以将展开式中100a拆成99a+a,这样展开式中出现了a+c,将a+
20、c用b替代,整理出最终结果即可;(2)首先设出两个欢喜数m、n,表示出F(m)、F(n)代入F(m)F(n)=3中,将式子变形分析得出最终结果即可.【详解】(1)证明:为欢喜数,a+c=b=100a+10b+c=99a+10b+a+c=99a+11b,b能被9整除,11b能被99整除,99a能被99整除,“欢喜数”能被99整除;(2)设m=,n=(且a1a2),F(m)F(n)=a1c1a2c2=a1(ba1)a2(ba2)=(a1a2)(ba1a2)=3,a1、a2、b均为整数,a1a2=1或a1a2=3mn=100(a1a2)(a1a2)=99(a1a2),mn=99或mn=2若F(m)F
21、(n)=3,则mn的值为99或2【点睛】做此类阅读理解类题目首先要充分理解题目,会运用因式分解将式子变形.20、(1);(2);(3)1【分析】(1)根据正比例函数即可得出答案;(2)根据点A和B的坐标,利用待定系数法求解即可;(3)先根据题(2)求出点C的坐标,从而可知OC的长,再利用三角形的面积公式即可得.【详解】(1)将代入正比例函数得,故点的坐标是;(2)设这个一次函数的解析式为把代入,得解方程组,得故这个一次函数的解析式为;(3)在中,令,得即点的坐标是,则的面积故的面积为1.【点睛】本题考查了一次函数的几何应用、利用待定系数法求一次函数的解析式,掌握一次函数的图象与性质是解题关键.
22、21、原式=.【分析】先把分式进行化简,得到最简代数式,然后根据特殊角的三角函数值,求出x的值,把x代入计算,即可得到答案.【详解】解:原式;当时,原式.【点睛】本题考查了特殊值的三角函数值,分式的化简求值,以及分式的加减混合运算,解题的关键是熟练掌握运算法则进行运算.22、x1或x0.1【分析】先移项,再利用因式分解法求解可得【详解】解:5x(x+1)2(x+1)0,(x+1)(5x2)0,则x+10或5x20,解得x1或x0.1【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键23、(1)y=x22x1;(2)
23、抛物线的对称轴x=1,顶点坐标(1,4);(1)(,4)或(,4)或(1,4)【分析】(1)由于抛物线y=x2+bx+c与x轴交于A(1,0),B(1,0)两点,那么可以得到方程x2+bx+c=0的两根为x=1或x=1,然后利用根与系数即可确定b、c的值(2)根据SPAB=2,求得P的纵坐标,把纵坐标代入抛物线的解析式即可求得P点的坐标【详解】解:(1)抛物线y=x2+bx+c与x轴交于A(1,0),B(1,0)两点,方程x2+bx+c=0的两根为x=1或x=1,1+1=b,11=c,b=2,c=1,二次函数解析式是y=x22x1(2)y=x22x1=(x1)24,抛物线的对称轴x=1,顶点坐标(1,4)(1)设P的纵坐标为|yP|,SPAB=2,AB|yP|=2,AB=1+1=4,|yP|=4,yP=4,把yP=4代入解析式得,4=x22x1,解得,x=12,把yP=4代入解析式得,4=x22x1,解得,x=1,点P在该抛物线上滑动到(1+2,4)或(12,4)或(1,4)时,满足SPAB=2【点睛】考点:1.待定系数法求二次函数解析式;2.二次函数的性质;1.二次函数图象上点的坐标特征24、32.05米【分析】先在RtABD中,用三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华师大版初中科学第5章《1 食物的消化和吸收》课件1
- 华师大版初中科学3、水是常用的溶剂16课件
- 医院陪护制度
- 医疗仪器设备备品备件管理制度
- 第四单元课题1 爱护水资源 九年级化学人教版2024上册
- 7《鹿角和鹿腿》核心素养分层学习任务单-2022-2023学年三年级语文下册新课标(部编版)
- 【寒假阅读提升】四年级下册语文试题-现代文阅读(四)-人教部编版(含答案解析)
- 心源性脑栓塞及小动脉闭塞性脑梗死
- 2024年惠州申请客运从业资格证2024年试题
- 2024年资阳客运从业资格证考试模拟试题
- 2024-2025学年九年级上学期期中考试英语试题
- 2024-2030年手机游戏行业市场深度分析及前景趋势与投资研究报告
- GB/T 20279-2024网络安全技术网络和终端隔离产品技术规范
- 安全工程导论课件:事故致因理论
- 山东省青岛实验中学2024-2025学年七年级上学期期中考试数学试题(无答案)
- 2024年安能物流合作加盟协议版
- 2024年湖南烟草专卖局招249人考试高频难、易错点500题模拟试题附带答案详解
- 生活饮用水、公共场所卫生管理系列国家强制性标准解读答案-2024年全国疾控系统“大学习”活动
- 质量管理体系过程方法和风险思维专业解读与应用之7:5 领导作用-5.3组织的岗位、职责和权限(雷泽佳编制-2024B1)
- 第二次月考卷-2024-2025学年统编版语文六年级上册
- 车辆采购服务投标方案(技术方案)
评论
0/150
提交评论