




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1一元二次方程x28x10配方后可变形为()A(x4)217B(x4)215C(x4)217D(x4)2152如图,的半径垂直于弦,是优弧上的一点(不与点重合),若,则
2、等于( )ABCD3抛物线y=(x-3)2+4的顶点坐标是( )A(-1,2) B(-1,-2) C(1,-2) D(3,4)4二次函数的图像如图所示,下面结论:;函数的最小值为;当时,;当时,(、分别是、对应的函数值)正确的个数为( )ABCD5下列说法正确的是( )A所有菱形都相似B所有矩形都相似C所有正方形都相似D所有平行四边形都相似6函数y=ax+b和y=ax2+bx+c(a0)在同一个坐标系中的图象可能为()ABCD7已知二次函数和一次函数的图象如图所示,下面四个推断:二次函数有最大值二次函数的图象关于直线对称当时,二次函数的值大于0过动点且垂直于x轴的直线与的图象的交点分别为C,D
3、,当点C位于点D上方时,m的取值范围是或,其中正确的有( )A1个B2个C3个D4个8已知反比例函数y,则下列点中在这个反比例函数图象上的是()A(1,2)B(1,2)C(2,2)D(2,l)9在中,是边上的点,则的长为( )ABCD10下列方程中,满足两个实数根的和等于3的方程是()A2x2+6x5=0B2x23x5=0C2x26x+5=0D2x26x5=011下图中,最能清楚地显示每组数据在总数中所占百分比的统计图是( )ABCD12从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86分,方差如下表,你认为派谁去参赛更合适( )选手甲乙丙丁方差1.52.63.
4、53.68A甲B乙C丙D丁二、填空题(每题4分,共24分)13圆心角为,半径为2的扇形的弧长是_.14已知二次函数的图象与轴有两个交点,则下列说法正确的有:_(填序号)该二次函数的图象一定过定点;若该函数图象开口向下,则的取值范围为:;当且时,的最大值为;当且该函数图象与轴两交点的横坐标满足时,的取值范围为:15如图,ABC中,已知C=90,B=55,点D在边BC上,BD=2CD把ABC绕着点D逆时针旋转m(0m180)度后,如果点B恰好落在初始RtABC的边上,那么m=_16如图,是的切线,为切点,点是上的一个动点,连结并延长,交的延长线于,则的最大值为_17如图,分别是边,上的点,若,则_
5、.18若线段AB=10cm,点C是线段AB的黄金分割点,则AC的长为_cm.(结果保留根号)三、解答题(共78分)19(8分)如图1,中,是的中点,平分交于点,在的延长线上且(1)求证:四边形是平行四边形;(2)如图2若四边形是菱形,连接,与交于点,连接,在不添加任何辅助线的情况下,请直接写出图2中的所有等边三角形20(8分)如图,某农场准备围建一个中间隔有一道篱笆的矩形花圃,现有长为米的篱笆,一边靠墙,若墙长米,设花圃的一边为米;面积为平方米(1)求与的函数关系式及值的取值范围;(2)若边不小于米,这个花圃的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由21(8分)
6、 (1)解方程:x(x+3)=2;(2)计算:sin45+3cos604tan4522(10分)如图,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD1),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N如果定义:只有一组对角是直角的四边形叫做损矩形(1)试找出图1中的一个损矩形;(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;(4)在图中,过点M作MGy轴于点G,
7、连接DN,若四边形DMGN为损矩形,求D点坐标23(10分)某单位准备组织员工到武夷山风景区旅游,旅行社给出了如下收费标准(如图所示):设参加旅游的员工人数为x人(1)当25x40时,人均费用为 元,当x40时,人均费用为 元;(2)该单位共支付给旅行社旅游费用27000元,请问这次参加旅游的员工人数共有多少人?24(10分)如图,某中学准备在校园里利用院墙的一段再用米长的篱笆围三面,形成一个矩形花园(院墙长米).(1)设米,则_米;(2)若矩形花园的面积为平方米,求篱笆的长.25(12分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD在路灯光下的影长分别为BM、D
8、N,在图中作出EF的影长26如图,在平面直角坐标系中,直线与双曲线相交于A(2,a)、B两点,BCx轴,垂足为C(1)求双曲线与直线AC的解析式;(2)求ABC的面积参考答案一、选择题(每题4分,共48分)1、C【分析】常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得【详解】解:,即,故选:C【点睛】本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的步骤和完全平方公式是解题的关键2、A【分析】根据题意,的半径垂直于弦,可应用垂径定理解题,平分弦,平分弦所对的弧、平分弦所对的圆心角,故,又根据同一个圆中,同弧所对的圆周角等于其圆心角的一半,可解得【详解】的半径垂
9、直于弦,故选A【点睛】本题考查垂径定理、圆周角与圆心角的关系,熟练掌握相关知识并灵活应用是解题关键.3、D【解析】根据抛物线解析式y=(x-3)2+4,可直接写出顶点坐标.【详解】y=(x-3)2+4的顶点坐标是(3,4).故选D.【点睛】此题考查了二次函数y=a(x-h)2+k的性质,对于二次函数y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=k.4、C【分析】由抛物线开口方向可得到a0;由抛物线过原点得c=0;根据顶点坐标可得到函数的最小值为-3;根据当x0时,抛物线都在x轴上方,可得y0;由图示知:0 x2,y随x的增大而减小;【详解】解:由函数图象开口向上可知,故此选项正确;
10、由函数的图像与轴的交点在可知,故此选项正确;由函数的图像的顶点在可知,函数的最小值为,故此选项正确;因为函数的对称轴为,与轴的一个交点为,则与轴的另一个交点为,所以当时,故此选项正确;由图像可知,当时,随着的值增大而减小,所以当时,故此选项错误;其中正确信息的有故选:C【点睛】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a0)的图象为抛物线,当a0,抛物线开口向上;对称轴为直线x=,;抛物线与y轴的交点坐标为(0,c);当b2-4ac0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac0,抛物线与x轴没有交点5、C【分析】根据相似多边形
11、的定义一一判断即可【详解】A菱形的对应边成比例,对应角不一定相等,故选项A错误;B矩形的对应边不一定成比例,对应角一定相等,故选项B错误;C正方形对应边一定成比例,对应角一定相等,故选项C正确;D平行四边形对应边不一定成比例,对应角不一定相等,故选项D错误故选:C【点睛】本题考查了相似多边形的判定,解答本题的关键是灵活运用所学知识解决问题,属于中考常考题型6、D【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数ax2+bx+c的图象相比较看是否一致【详解】解:A由一次函数的图象可知a0,b0,由抛物线图象可知,开口向上,a0,对称轴x=0,b0;两者相矛盾,错误;B由一
12、次函数的图象可知a0,b0,由抛物线图象可知a0,两者相矛盾,错误;C由一次函数的图象可知a0,b0,由抛物线图象可知a0,两者相矛盾,错误;D由一次函数的图象可知a0,b0,由抛物线图象可知a0,对称轴x=0,b0;正确故选D【点睛】解决此类问题步骤一般为:(1)根据图象的特点判断a取值是否矛盾;(2)根据二次函数图象判断其顶点坐标是否符合要求7、B【分析】根据函数的图象即可得到结论【详解】解:二次函数y1=ax2+bx+c(a0)的图象的开口向上,二次函数y1有最小值,故错误;观察函数图象可知二次函数y1的图象关于直线x=-1对称,故正确;当x=-2时,二次函数y1的值小于0,故错误;当x
13、-3或x-1时,抛物线在直线的上方,m的取值范围为:m-3或m-1,故正确故选B【点睛】本题考查了二次函数图象上点的坐标特征以及函数图象,熟练运用二次函数图象上点的坐标特征求出二次函数解析式是解题的关键8、A【分析】根据y=得k=x2y=2,所以只要点的横坐标的平方与纵坐标的积等于2,就在函数图象上【详解】解:A、1222,故在函数图象上;B、12(2)22,故不在函数图象上;C、22282,故不在函数图象上;D、22142,故不在函数图象上故选A【点睛】本题主要考查反比例函数图象上点的坐标特征,所有反比例函数图象上的点的坐标适合解析式9、C【分析】先利用比例性质得到AD:AB=3:4,再证明
14、ADEABC,然后利用相似比可计算出AC的长【详解】解:解:AD=9,BD=3,AD:AB=9:12=3:4,DEBC,ADEABC,=,AE=6,AC=8,故选C.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用相似三角形的性质时主要利用相似比计算线段的长10、D【分析】利用根与系数的关系判断即可【详解】满足两个实数根的和等于3的方程是2x2-6x-5=0,故选D【点睛】此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键11、A【
15、分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目【详解】解:在进行数据描述时,要显示部分在总体中所占的百分比,应采用扇形统计图故选:A【点睛】本题考查统计图的选择,解决本题的关键是明确:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频率分布直方图,清楚显示在各个不同区间内取值,各组频率分布情况,易于显示各组之间频率的差别12、A【分析】根据方
16、差的意义即可得【详解】方差越小,表示成绩波动性越小、越稳定观察表格可知,甲的方差最小,则派甲去参赛更合适故选:A【点睛】本题考查了方差的意义,掌握理解方差的意义是解题关键二、填空题(每题4分,共24分)13、【分析】利用弧长公式进行计算.【详解】解: 故答案为:【点睛】本题考查弧长的计算,掌握公式正确计算是本题的解题关键.14、【分析】根据二次函数图象与x轴有两个交点,利用根的判别式可求出,中将点代入即可判断,中根据“开口向下”和“与x轴有两个交点”即可得出m的取值范围,中根据m的取值可判断出开口方向和对称轴范围,从而判断增减性确定最大值,中根据开口方向及x1,x2的范围可判断出对应y的取值,
17、从而建立不等式组求解集【详解】由题目中可知:,由题意二次函数图象与x轴有两个交点,则:,即,将代入二次函数解析式中,则点在函数图象上,故正确;若二次函数开口向下,则,解得,且,所以的取值范围为:,故正确;当时,即二次函数开口向上,对称轴,对称轴在左侧,则当时,随的增大而增大,当时有最大值,故错误;当时,即二次函数开口向上,当时,时,即,解得:,当时,时,即,解得:,综上,故正确故答案为:【点睛】本题考查二次函数的图像与性质,以及利用不等式组求字母取值范围,熟练掌握二次函数各系数与图象之间的关系是解题的关键15、70或120【分析】当点B落在AB边上时,根据DB=DB1,即可解决问题,当点B落在
18、AC上时,在RTDCB2中,根据C=90,DB2=DB=2CD可以判定CB2D=30,由此即可解决问题【详解】当点B落在AB边上时,当点B落在AC上时,在中,C=90, ,故答案为70或120.【点睛】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.16、【分析】根据题意可知当ED与相切时,EC最大,再利用ECDEBA,找到对应边的关系即可求解.【详解】解:如图,当CDDE于点D时EC最大CDDE,是的切线EDC=EAB=90又E=EECDEBA则,EAB=90CD=AC=1在RtABE中利用勾股定理得即则可化为,解得或(舍去)综上所述,的最大值为【点睛】本题考查了切线和相
19、似的性质,能通过切线的性质找到符合要求的点,再能想到相似得到对应边的关系是解答此题的关键.17、1【分析】证明ADEACB,根据相似三角形的性质列出比例式,计算即可【详解】解:ADE=ACB,A=A,ADEACB,即,解得,AE=1,故答案为:1【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键18、 或【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC可能为较长线段,也可能为较短线段.【详解】解:AB=10cm,C是黄金分割点,当ACBC时,则有AC=AB=10=,当ACBC时,则有BC=AB=10=,AC=AB-BC=10-(
20、 )= ,AC长为 cm或 cm.故答案为: 或【点睛】本题考查了黄金分割点的概念注意这里的AC可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键三、解答题(共78分)19、(1)详见解析;(2)ACF、【分析】(1)在中,是的中点,可得,再通过,得证,再通过证明,得证,即可证明四边形BCEF是平行四边形; (2)根据题意,直接写出符合条件的所有等边三角形即可【详解】(1)证明:在中,是的中点, ,平分,又,四边形BCEF是平行四边形;(2)四边形是菱形,BCE和BEF是等边三角形在CDE和CGE中 是等边三角形 ACF是等边三角形等边三角形有ACF, 【点睛】本题考查了几何图形的综
21、合问题,掌握直角三角形的斜边中线定理、平行的性质以及判定定理、平行四边形的性质以及判定、菱形的性质是解题的关键20、(1);(2)当时,有最大值,最大值是,当时,有最小值,最小值是【分析】(1)根据题意可得S=x(18-3x)=-3x+18x(2)根据和边不小于米,则4x5,在此范围内是减函数,代入求值即可【详解】解:(1),(2),当时,有最大值,最大值是,当时,有最小值,最小值是【点睛】本题考查的是二次函数中的面积问题,注意自变量的取值范围21、 (1) x1=2,x2=1;(2)-1.1.【分析】(1)根据因式分解法,可得答案;(2)根据特殊角三角函数值,可得答案【详解】(1)方程整理,
22、得x2+3x+2=0,因式分解,得(x+2)(x+1)=0,于是,得x+2=0,x+1=0,解得x1=2,x2=1;(2)原式=1+1.14=1.1【点睛】本题考查了解一元二次方程以及含有特殊三角函数值的计算,掌握因式分解和特殊角三角函数值是解题关键22、(1)详见解析;(2)详见解析;(3)N点的坐标为(0,1);(4)D点坐标为(3,0)【解析】试题分析:(1)根据题中给出的损矩形的定义,从图找出只有一组对角是直角的四边形即可;(2)证明四边形BADM四个顶点到BD的中点距离相等即可;(3)利用同弧所对的圆周角相等可得MAD=MBD,进而得到OA=ON,即可求得点N的坐标;(4)根据正方形
23、的性质及损矩形含有的直角,利用勾股定理求解(1)四边形ABMD为损矩形; (2)取BD中点H,连结MH,AH四边形OABC,BDEF是正方形ABD,BDM都是直角三角形HA=BD HM=BDHA=HB=HM=HD=BD损矩形ABMD一定有外接圆 (3)损矩形ABMD一定有外接圆HMAD =MBD四边形BDEF是正方形MBD=45MAD=45OAN=45OA=1 ON=1 N点的坐标为(0,-1)(4) 延长AB交MG于点P,过点M作MQ轴于点Q设MG=,则四边形APMQ为正方形PM=AQ=-1 OG=MQ=-1MBPMDQDQ=BP=CG=-2MN2ND2MD2四边形DMGN为损矩形=2.5或=1(舍去)OD=3 D点坐标为(3,0).考点:本题考查的是确定圆的条件,正方形的性质点评:解答本题的关键是理解损矩形的只有一组对角是直角的性质,23、(1)100020(x25);1(2)30名【分析】(1)求出当人均旅游费为1元时的员工人数,再根据给定的收费标准即可求出结论;(2)由25100021021可得出25x2,由总价=单价数量结合(1)的结论,即可得出关于x的一元二次方程,解之取其较小值即可得出结论【详解】解:(1)25+(10001)20=2(人),当25x2时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南施工建设建设合同
- 安置房工程合同书
- 技术入股协议合同
- 婚宴服务合同
- 代理记账管理合同书
- 商铺租赁经营合同书
- 建筑工程机械材料租赁合同
- 教师事业单位聘用合同
- 房屋维修合同协议书
- 整车协议合同
- Unit 3Keep Fit.教案2024-2025学年人教版(2024)七年级英语下册
- 保障公路、公路附属设施质量和安全的技术评价报告
- 2022年10月自考06779应用写作学试题及答案
- 年产十万吨丙烯腈生产工艺设计
- 人教版高中物理必修二全册同步课时练习
- 城市社区管理中存在的问题及对策研究正文内容
- (完整)人教版 高一物理课后习题答案
- GB/Z 26337.1-2010供应链管理第1部分:综述与基本原理
- 幼儿园绘本:《超级细菌王国》
- 污水处理及配套管网工程-项目管理机构配备情况
- 《2022年基础教育省级教学成果奖申报书》
评论
0/150
提交评论