




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一
2、并交回。一、选择题(每题4分,共48分)1图中所示的几个图形是国际通用的交通标志.其中不是轴对称图形的是( )ABCD2如图,已知BAC=ADE=90,ADBC,AC=DC关于优弧CAD,下列结论正确的是( )A经过点B和点EB经过点B,不一定经过点EC经过点E,不一定经过点BD不一定经过点B和点E3下列说法正确的是( )A“概率为11111的事件”是不可能事件B任意掷一枚质地均匀的硬币11次,正面向上的一定是5次C“任意画出一个等边三角形,它是轴对称图形”是随机事件D“任意画出一个平行四边行,它是中心对称图形”是必然事件4边长为2的正六边形的面积为()A6B6C6D5下列语句中,正确的是()
3、相等的圆周角所对的弧相等;同弧或等弧所对的圆周角相等;平分弦的直径垂直于弦,并且平分弦所对的弧;圆内接平行四边形一定是矩形ABCD6若反比例函数的图象经过点(2,-3),则k值是( )A6B-6CD7如图是小玲设计用手电来测家附近“新华大厦”高度的示意图点处放一水平的平面镜,光线从点出发经平面镜反射后刚好射到大厦的顶端处,已知,且测得米,米,米,那么该大厦的高度约为( )A米B米C米D米8已知关于的一元二次方程的两根为,则一元二次方程的根为()A0,4B3,5C2,4D3,19如图所示的几何体是由个大小相同的小立方块搭成,它的俯视图是( )ABCD10如图,抛物线和直线,当时,的取值范围是(
4、)AB或C或D11某单行道路的路口,只能直行或右转,任意一辆车通过路口时直行或右转的概率相同.有3辆车通过路口.恰好有2辆车直行的概率是( )ABCD12如图,在O中,弦AC半径OB,BOC50,则OAB的度数为()A25B20C15D30二、填空题(每题4分,共24分)13如图,在ABC中,AC:BC:AB3:4:5,O沿着ABC的内部边缘滚动一圈,若O的半径为1,且圆心O运动的路径长为18,则ABC的周长为_14如图,在轴的正半轴上依次截取,过点、,分别作轴的垂线与反比例函数的图象相交于点、,得直角三角形、,并设其面积分别为、,则_的整数).15如图,点B是反比例函数上一点,矩形OABC的
5、周长是20,正方形BCGH和正方形OCDF的面积之和为68,则反比例函数的解析式是_16若ABCABC,且,ABC的周长为12cm,则ABC的周长为_17在等腰ABC中,ABAC4,BC6,那么cosB的值_18如图,矩形中,将矩形按如图所示的方式在直线上进行两次旋转,则点在两次旋转过程中经过的路径的长是(结果保留)_.三、解答题(共78分)19(8分)如图,已知抛物线yax2+bx+5经过A(5,0),B(4,3)两点,与x轴的另一个交点为C,顶点为D,连结CD(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t当点P在直线BC的下方运动时,求PBC
6、的面积的最大值;该抛物线上是否存在点P,使得PBCBCD?若存在,求出所有点P的坐标;若不存在,请说明理由20(8分)如图,直线yx3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线yx2+mx+n与x轴的另一个交点为A,顶点为P(1)求3m+n的值;(2)在该抛物线的对称轴上是否存在点Q,使以C,P,Q为顶点的三角形为等腰三角形?若存在,求出有符合条件的点Q的坐标;若不存在,请说明理由(3)将该抛物线在x轴上方的部分沿x轴向下翻折,图象的其余部分保持不变,翻折后的图象与原图象x轴下方的部分组成一个“M“形状的新图象,若直线yx+b与该“M”形状的图象部分恰好有三个公共点,求b的值21(
7、8分)春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元,请问该单位这次共有多少员工去天水湾风景区旅游?22(10分)如图,在ABCD中 过点A作AEDC,垂足为E,连接BE,F为BE上一点,且AFE=D(1)求证:ABFBEC;(2)若AD=5,AB=8,sinD=,求AF的长23(10分)小明和小军两人一起做游戏,游戏规则如下:每人从1,2,8中任意选择一个数字,然后两人各转动一次如图所示的转盘(转盘被分为面积相等的四个扇形),两人转出的数字之和等于谁事先选择的数,谁就获胜;若两人转出的数字之和不等于他们
8、各自选择的数,就在做一次上述游戏,直至决出胜负若小军事先选择的数是5,用列表或画树状图的方法求他获胜的概率24(10分)(1)解方程:(2)已知关于的方程无解,方程的一个根是求和的值;求方程的另一个根25(12分)如图,在ABC中,C=90,AB的垂直平分线分别交边AB、BC于点D、E,连结AE(1)如果B=25,求CAE的度数;(2)如果CE=2,求的值26寒冬来临,豆丝飘香,豆丝是鄂州民间传统美食;某企业接到一批豆丝生产任务,约定这批豆丝的出厂价为每千克4元,按要求在20天内完成为了按时完成任务,该企业招收了新工人,新工人李明第1天生产100千克豆丝,由于不断熟练,以后每天都比前一天多生产
9、20千克豆丝;设李明第x天(,且x为整数)生产y千克豆丝,解答下列问题:(1)求y与x的关系式,并求出李明第几天生产豆丝280千克?(2)设第x天生产的每千克豆丝的成本是p元,p与x之间满足如图所示的函数关系;若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)参考答案一、选择题(每题4分,共48分)1、C【分析】根据轴对称图形的概念求解如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形【详解】A、B、D都是轴对称图形,而C不是轴对称图形故选C【点睛】本题主要考查了轴对称图形的概念轴对称图形的关键是寻找对称
10、轴,图形两部分折叠后可重合2、B【分析】由条件可知BC垂直平分AD,可证ABCDBC,可得BAC=BDC=90故BAC+BDC=180则A、B、D、C四点共圆,即可得结论.【详解】解:如图:设AD、BC交于MAC=CD,ADBCM为AD中点BC垂直平分ADAB=DBBC=BC,AC=CDABCDBCBAC=BDC=90BAC+BDC=180A、B、D、C四点共圆优弧CAD经过B,但不一定经过E故选 B【点睛】本题考查了四点共圆,掌握四点共圆的判定是解题的关键.3、D【分析】根据不可能事件、随机事件、以及必然事件的定义(即根据事件发生的可能性大小)逐项判断即可【详解】在一定条件下,不可能发生的事
11、件叫不可能事件;一定会发生的事件叫必然事件;可能发生也可能不发生的事件叫随机事件A、“概率为的事件”是随机事件,此项错误B、任意掷一枚质地均匀的硬币11次,正面向上的不一定是5次,此项错误C、“任意画出一个等边三角形,它是轴对称图形”是必然事件,此项错误D、“任意画出一个平行四边行,它是中心对称图形”是必然事件,此项正确故选:D【点睛】本题考查了不可能事件、随机事件、以及必然事件的定义,掌握理解相关定义是解题关键4、A【解析】首先根据题意作出图形,然后可得OBC是等边三角形,然后由三角函数的性质,求得OH的长,继而求得正六边形的面积【详解】解:如图,连接OB,OC,过点O作OHBC于H,六边形
12、ABCDEF是正六边形,BOC36060,OB0C,OBC是等边三角形,BCOBOC2,它的半径为2,边长为2;在RtOBH中,OHOBsin602,边心距是:;S正六边形ABCDEF6SOBC626故选:A【点睛】本题考查圆的内接正六边形的性质、正多边形的内角和、等边三角形的判定与性质以及三角函数等知识此题难度不大,注意掌握数形结合思想的应用5、C【分析】根据圆周角定理、垂径定理、圆内接四边形的性质定理判断【详解】在同圆或等圆中,相等的圆周角所对的弧相等,本说法错误;同弧或等弧所对的圆周角相等,本说法正确;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,本说法错误;圆内接平行四边形一定
13、是矩形,本说法正确;故选:C【点睛】本题考查的是命题的真假判断,掌握圆周角定理、垂径定理、圆内接四边形的性质定理是解题的关键6、B【分析】直接把点代入反比例函数解析式即可得出k的值【详解】反比例函数的图象经过点,解得:故选:B【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键7、B【分析】根据光线从点出发经平面镜反射后刚好射到大厦的顶端处,可知,再由,可得,从而可以得到,即可求出CD的长【详解】光线从点出发经平面镜反射后刚好射到大厦的顶端处米,米,米CD=16(米)【点睛】本题考查的知识点是相似三角形的性质与判定,通过判定三角
14、形相似得到对应线段成比例,构成比例是关键8、B【分析】先将,代入一元二次方程得出与的关系,再将用含的式子表示并代入一元二次方程求解即得【详解】关于的一元二次方程的两根为,或整理方程即得:将代入化简即得:解得:,故选:B【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程9、C【解析】根据简单几何体的三视图即可求解.【详解】三视图的俯视图,应从上面看,故选C【点睛】此题主要考查三视图的判断,解题的关键是熟知三视图的定义.10、B【分析】联立两函数解析式求出交点坐标,再根据函数图象写出抛物线在直线上方部分的的取值范围即可【详解
15、】解:联立,解得,两函数图象交点坐标为,由图可知,时的取值范围是或故选:B【点睛】本题考查了二次函数与不等式,此类题目利用数形结合的思想求解更加简便11、B【分析】用表示直行、表示右转,画出树状图表示出所有的种等可能的结果,其中恰好有辆车直行占种,然后根据概率公式求解即可【详解】解:若用表示直行、表示右转,则画树状图如下:共有种等可能的结果,其中恰好有辆车直行占种(恰好辆车直行)故选:B【点睛】此题考查的是用树状图法求概率注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率等于所求情况数与总情况数之比12、A【分析】根据圆周角定理可得BAC=25,又由ACO
16、B,BAC=B=25,再由等边对等角即可求解答【详解】解:BOC=2BAC,BOC=50,BAC=25,又 ACOBBAC=B=25.OA=OBOAB=B=25故答案为A【点睛】本题考查了圆周角定理和平行线的性质,灵活应用所学定理以及数形结合思想的应用都是解答本题的关键二、填空题(每题4分,共24分)13、4【分析】如图,首先利用勾股定理判定ABC是直角三角形,由题意得圆心O所能达到的区域是DEG,且与ABC三边相切,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ、FM、FN,根据切线性质可得:AGAH,PCCQ,BNBM,DG、EP分别垂直于AC,EQ、FN分别垂直于BC,F
17、M、DH分别垂直于AB,继而则有矩形DEPG、矩形EQNF、矩形DFMH,从而可知DEGP,EFQN,DFHM,DEGP,DFHM,EFQN,PEF90,根据题意可知四边形CPEQ是边长为1的正方形,根据相似三角形的判定可得DEFACB,根据相似三角形的性质可知:DEEFFDACCBBA341,进而根据圆心O运动的路径长列出方程,求解算出DE、EF、FD的长,根据矩形的性质可得:GP、QN、MH的长,根据切线长定理可设:AGAHx,BNBMy,根据线段的和差表示出AC、BC、AB的长,进而根据ACCBBA341列出比例式,继而求出x、y的值,进而即可求解ABC的周长【详解】ACCBBA341,
18、设AC3a,CB4a,BA1a(a0)ABC是直角三角形,设O沿着ABC的内部边缘滚动一圈,如图所示,连接DE、EF、DF,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ、FM、FN,根据切线性质可得:AGAH,PCCQ,BNBMDG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,DGEP,EQFN,FMDH,O的半径为1DGDHPEQEFNFM1,则有矩形DEPG、矩形EQNF、矩形DFMH,DEGP,EFQN,DFHM,DEGP,DFHM,EFQN,PEF90又CPECQE90, PEQE1四边形CPEQ是正方形,PCPEEQCQ1,O的半径为1,
19、且圆心O运动的路径长为18,DE+EF+DF18,DEAC,DFAB,EFBC,DEFACB,DFEABC,DEFABC,DE:EF:DFAC:BC:AB3:4:1,设DE3k(k0),则EF4k,DF1k,DE+EF+DF18,3k+4k+1k18,解得k, DE3k,EF4k6,DF1k,根据切线长定理,设AGAHx,BNBMy,则ACAG+GP+CPx+1x+11,BCCQ+QN+BN1+6+yy+2,ABAH+HM+BMx+yx+y+21,AC:BC:AB3:4:1,(x+11):(y+2):(x+y+21)3:4:1,解得x2,y3,AC21,BC10,AB31,AC+BC+AB4所
20、以ABC的周长为4故答案为4【点睛】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆心O的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点14、【解析】根据反比例函数y=中k的几何意义再结合图象即可解答【详解】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,S=|k|.=1, =1,O =,=,同理可得,=1 = = =.故答案是:.【点睛】本题考查反比例函数系数k的几何意义.15、y=【详解】解:设矩形OABC的两边分别为,b则+b=10,2+b2=68(+b) 2=2
21、+b2+22=(+b)2- (2+b2)=32=16反比例函数的解析式是【点睛】本题考查矩形、正方形面积公式; 完全平方公式;反比例函数面积有关的问题此种试题,相对复杂,需要学生掌握矩形、正方形面积公式,并利用完全平方公式和反比例函数相关的问题16、16 cm【分析】根据相似三角形周长的比等于相似比求解【详解】解:ABCABC,且,即相似三角形的相似比为,ABC的周长为12cmABC的周长为12=16cm故答案为:16.【点睛】此题考查相似三角形的性质,解题关键在于掌握相似三角形周长的比等于相似比17、3【解析】作ADBC于D点,根据等腰三角形的性质得到BD12BC【详解】解:如图,作ADBC
22、于D点,ABAC4,BC6,BD12BC在RtABD中,cosBBDAB3故答案为34【点睛】本题考查了锐角三角函数的定义:在直角三角形中,一锐角的余弦值等于这个角的邻边与斜边的比也考查了等腰三角形的性质18、【分析】根据勾股定理求出BD的长,点B旋转所经过的路径应是弧线,根据公式计算即可.【详解】如图,,由旋转得: ,点B两次旋转所经过的路径长为=.故答案为:.【点睛】此题考查弧长公式,熟记公式,明确各字母代表的含义并正确代入公式进行计算即可三、解答题(共78分)19、 (1)yx2+6x+5;(2)SPBC的最大值为;存在,点P的坐标为P(,)或(0,5)【解析】(1)将点A、B坐标代入二
23、次函数表达式,即可求出二次函数解析式;(2)如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:yx+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(,),过该点与BC垂直的直线的k值为1,求出 直线BC中垂线的表达式为:yx4,同理直线CD的表达式为:y2x+2,、联立并解得:x2,即点H(2,2),同理可得直线BH的表达式为:yx1,联立和yx2+6x+5并解得:x,即可求出P点;当点P(P)在直线BC上方时,根据PBCB
24、CD求出BPCD,求出直线BP的表达式为:y2x+5,联立yx2+6x+5和y2x+5,求出x,即可求出P.【详解】解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:yx2+6x+5,令y0,则x1或5,即点C(1,0);(2)如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:yx+1,设点G(t,t+1),则点P(t,t2+6t+5),SPBCPG(xCxB)(t+1t26t5)t2t6,-0,SPBC有最大值,当t时,其最大值为;设直线BP与CD交于点H,当点P在直线BC下方时,PBCBCD,点H在BC的中垂线
25、上,线段BC的中点坐标为(,),过该点与BC垂直的直线的k值为1,设BC中垂线的表达式为:yx+m,将点(,)代入上式并解得:直线BC中垂线的表达式为:yx4,同理直线CD的表达式为:y2x+2,联立并解得:x2,即点H(2,2),同理可得直线BH的表达式为:yx1,联立并解得:x或4(舍去4),故点P(,);当点P(P)在直线BC上方时,PBCBCD,BPCD,则直线BP的表达式为:y2x+s,将点B坐标代入上式并解得:s5,即直线BP的表达式为:y2x+5,联立并解得:x0或4(舍去4),故点P(0,5);故点P的坐标为P(,)或(0,5)【点睛】本题考查的是二次函数,熟练掌握抛物线的性质
26、是解题的关键.20、 (1)9;(2)点Q的坐标为(2,12)或(2,1+2)或(2,)或(2,7);(3)b3或【分析】(1)求出B、C的坐标,将点B、C的坐标分别代入抛物线表达式,即可求解;(2)分CPPQ、CPCQ、CQPQ,分别求解即可;(3)分两种情况,分别求解即可【详解】解:(1)直线yx3,令y0,则x3,令x0,则y3,故点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标分别代入抛物线表达式得:,解得: ,则抛物线的表达式为:yx2+4x3,则点A坐标为(1,0),顶点P的坐标为(2,1),3m+n1239;(2) 当CPCQ时,C点纵坐标为PQ中点的纵坐标相同为3,
27、故此时Q点坐标为(2,7);当CPPQ时,PC=, 点Q的坐标为(2,1)或(2,1+);当CQPQ时,过该中点与CP垂直的直线方程为:yx,当x2时,y,即点Q的坐标为(2,);故:点Q的坐标为(2,12)或(2,1+2)或(2,)或(2,7);(3)图象翻折后的点P对应点P的坐标为(2,1),在如图所示的位置时,直线yx+b与该“M”形状的图象部分恰好有三个公共点,此时C、P、B三点共线,b3;当直线yx+b与翻折后的图象只有一个交点时,此时,直线yx+b与该“M”形状的图象部分恰好有三个公共点;即:x24x+3x+b,524(3b)0,解得:b即:b3或【点睛】本题考查的是二次函数综合运
28、用,涉及的知识点有待定系数法求二次函数解析式,一次函数的图像与性质,勾股定理,等腰三角形的定义,二次函数的翻折变换及二次函数与一元二次方程的关系.难点在于(3),关键是通过数形变换,确定变换后图形与直线的位置关系,难度较大.本题也考查了分类讨论及数形结合的数学思想.21、该单位这次共有30名员工去天水湾风景区旅游.【分析】首先根据共支付给春秋旅行社旅游费用27 000元,确定旅游的人数的范围,然后根据每人的旅游费用人数=总费用,设该单位这次共有x名员工去天水湾风景区旅游即可由对话框,超过25人的人数为(x25)人,每人降低20元,共降低了20(x25)元实际每人收了100020(x25)元,列
29、出方程求解【详解】设该单位这次共有名员工去天水湾风景区旅游,因为,所以员工人数一定超过25人,可得方程,整理,得,解得:,当时,故舍去,当时,符合题意 ,答:该单位这次共有30名员工去天水湾风景区旅游.22、(1)证明见解析;(2)【解析】试题分析:(1)由平行四边形的性质得出ABCD,ADBC,AD=BC,得出D+C=180,ABF=BEC,证出C=AFB,即可得出结论;(2)由勾股定理求出BE,由三角函数求出AE,再由相似三角形的性质求出AF的长试题解析:(1)证明:四边形ABCD是平行四边形,ABCD,ADBC,AD=BC,D+C=180,ABF=BEC,AFB+AFE=180,C=AFB,ABFBEC;(2)解:AEDC,ABDC,AED=BAE=90,在RtABE中,根据勾股定理得:BE=,在RtADE中,AE=ADsinD=5=4,BC=AD=5,由(1)得:ABFBEC,即,解得:AF=2考点:相似三角形的判定与性质;平行四边形的性质;解直角三角形23、【解析】试题分析:列表得出所有等可能的情况数,找出两指针所指数字的和为5情况数,即可确定小军胜的概率试题解析:列表如下:所有等可能的情况有16种,其中两指针所指数字的和为5的情况有4种,所以小军获胜的概
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南施工建设建设合同
- 安置房工程合同书
- 技术入股协议合同
- 婚宴服务合同
- 代理记账管理合同书
- 商铺租赁经营合同书
- 建筑工程机械材料租赁合同
- 教师事业单位聘用合同
- 房屋维修合同协议书
- 整车协议合同
- 2024年浙江长征职业技术学院单招综合素质考试题库附答案
- 2025届安徽省池州市普通高中高三下学期教学质量统一监测物理试卷(含答案)
- 库房管理工作职责与规范化
- Unit 3Keep Fit.教案2024-2025学年人教版(2024)七年级英语下册
- 保障公路、公路附属设施质量和安全的技术评价报告
- 马工程《艺术学概论》
- 酒驾案件办理培训课件
- 2022年10月自考06779应用写作学试题及答案
- 工地运输车辆的危险源辨识与风险防控
- 《美在身边》PPT课件.ppt
- 2016年最新《援外出国人员生活待遇管理办》法
评论
0/150
提交评论