




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、人教版九年级数学下册第二十七章-相似章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,ABC的顶点A在第二象限,点B坐标为(2,0),点C坐标为(1,0),以点C为位似中心
2、,在x轴的下方作ABC的位似图形ABC若点A的对应点A的坐标为(2,3),点B的对应点B的坐标为(1,0),则点A坐标为()A(3,2)B(2,)C(,)D(,2)2、如图,分别交于点G,H,则下列结论中错误的是( )ABCD3、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC相似的是( )ABCD4、如图,点是正方形的边边上的黄金分割点,且,表示为边长的正方形面积,表示以为长,为宽的矩形面积,表示正方形除去和剩余的面积,:的值为( )ABCD5、如图,在RtABC中,A90点D在AB边上,点E在AC边上,满足CDE45,AEDB若DE1,BC7,则( )A2B4C5D66、
3、如图,已知点M是ABC的重心,AB18,MNAB,则MN的值是()A9BCD67、如图的两个四边形相似,则a的度数是( )A120B87C75D608、如图,在ABC中,点D、E是AB、AC的中点,若ADE的面积是1,则四边形BDEC的面积为()A4B3C2D19、在ABC中,D,E分别是边AB,AC上的两个点,并且DEBC,AD:BD3:2,则ADE与四边形BCED的面积之比为()A3:5B4:25C9:16D9:2510、如图,在ABC中,点D、E分别是AB、AC的中点,若ABC的面积为16,则四边形BCED的面积为( )A8B12C14D16第卷(非选择题 70分)二、填空题(5小题,每
4、小题4分,共计20分)1、如图,在平面直角坐标系中,点P,A的坐标分别为(1,0),(2,4),点B是y轴上一动点,过点A作ACAB交x轴于点C,点M为线段BC的中点,则PM的最小值为 _2、我国古代数学著作 九章算术中记载:“今有邑方不知大小, 各中开门. 出北门三十步有木, 出 西门七百五十步有木. 问邑方几何? ”示意图如图, 正方形 中, 分别是 和 的 中点, 若 , 且 过点 , 那么正方形 的边长为_3、如图,双曲线经过Rt斜边上的中点A,与BC交于点D,则_4、若,则_5、如图,在ABC中,ABAC10,ADBC于点D,AD8,若点E是ABC的重心,点F是ACD的重心,则AEF
5、的面积为 _三、解答题(5小题,每小题10分,共计50分)1、如图,已知EACDAB,DB,求证:ABCADE2、如图,已知直线l经过点A(1,0),与双曲线y=(x0)交于点B(2,1)过点P(p,p-1)(p1)作x轴的平行线分别交双曲线y=(x0)和y=-(x0)于点M、N(1)求m的值和直线l的解析式;(2)若点P在直线y=2上,求证:PMBPNA;(3)是否存在实数p,使得SAMN=4SAMP?若存在,请求出所有满足条件的p的值;若不存在,请说明理由3、在等边三角形ABC中,点D是边AB的中点,过点D作DEBC交AC于点E,点F在BC边上,连接DF,EF(1)如图1,当DF是BDE的
6、平分线时,若AE2,求EF的长;(2)如图2,当DFDE时,设AEa,则EF的长为 (用含a的式子表示)4、已知:如图,在平面直角坐标系中,点A,B分别在x,y轴上,且OA,OB的长(OAOB)是一元二次方程x27x120的两根(1)求点A,B的坐标及线段AB的长;(2)过点B作BCAB,交x轴于点C,求点C的坐标;(3)在(2)的条件下,如果P,Q分别是线段AB和AC上的动点,连接PQ,设APCQx,问是否存在这样的x,使得APQ与ABC相似?若存在,请直接写出x的值;若不存在,请说明理由5、如图,在平面直角坐标系中,是坐标原点(1)画出以点为旋转中心,将OBC顺时针旋转90后的三角形(2)
7、在轴的左侧将放大到原来的两倍(即新图与原图的相似比为2:1),画出新图形O,并写出的坐标-参考答案-一、单选题1、C【解析】【分析】如图,过点A作AEx轴于E,过点A作AFx轴于F利用相似三角形的性质求出AE,OE,可得结论【详解】解:如图,过点A作AEx轴于E,过点A作AFx轴于FB(-2,0),C(-1,0),B(1,0),A(2,-3)OB=2,OC=OB=1,OF=2,AF=3,BC=1,CB=2,CF=3,ABCABC,ACE=ACF,AEC=AFC=90,AECAFC,故选:C【点睛】本题考查位似变换,坐标与图形性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构
8、造相似三角形解决问题2、D【解析】【分析】根据平行线分线段成比例和相似三角形的性质与判定,进行逐一判断即可【详解】解:ABCD,A选项正确,不符合题目要求;AEDF,CGE=CHD,CEG=D,CEGCDH,ABCD,B选项正确,不符合题目要求; ABCD,AEDF,四边形AEDF是平行四边形,AF=DE,AEDF,; C选项正确,不符合题目要求;AEDF,BFHBAG,ABFA,D选项不正确,符合题目要求 故选D【点睛】本题考查了平行线分线段成比例定理,相似三角形的性质和判定的应用,能根据定理得出比例式是解此题的关键3、B【解析】【分析】根据正方形的性质求出,根据相似三角形的判定定理判断即可
9、【详解】解:由正方形的性质可知,、图形中的钝角都不等于,由勾股定理得,对应的图形中的边长分别为1和,图中的三角形(阴影部分)与相似,故选:B【点睛】本题考查的是相似三角形的判定,解题的关键是掌握两组对应边的比相等且夹角对应相等的两个三角形相似4、C【解析】【分析】设正方形ABCD的边长为a,关键黄金分割点的性质得到和,用a表示出、和的面积,再求比例【详解】解:设正方形ABCD的边长为a,点E是AB上的黄金分割点,故选C【点睛】本题考查黄金分割点,解题的关键是掌握黄金分割点的性质5、A【解析】【分析】根据ADEACB,得到AC=7AD,AB=7AE,过点E作EFDC,垂足为F,由CDE45,DE
10、1,CFECAD,得到EF,DF,FC,DC的长,计算面积即可【详解】如图,过点E作EFDC,垂足为F,AEDB,AA,ADEACB,AD:AC= AE:AB= DE:BC=1:7,AC=7AD,AB=7AE,CDE45,DE1,EF=DF=,EFCDAC,ECFDCA,CFECAD,EF:DA= CF:CA, EF:CF= DA:CA =1:7, CF=,CD=,=2,故选【点睛】本题考查了三角形的相似与性质,勾股定理,熟练掌握三角形相似的判定是解题的关键6、D【解析】【分析】根据重心的概念得到,证明CMNCDB,根据相似三角形的性质列式计算,得到答案【详解】点M是ABC的重心,AB18,A
11、D=DB=AB=9,MN/AB,CMNCDB,即解得:MN=6,故选:D【点睛】本题考查的是三角形的重心的概念和性质、相似三角形的判定和性质,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键7、B【解析】【分析】根据相似多边形的性质,可得 ,再根据四边形的内角和等于360,即可求解【详解】解:如图,两个四边形相似, ,两个四边形相似,且四边形的内角和等于360, 故选:B【点睛】本题主要考查了相似多边形的性质,多边形的内角和,熟练掌握相似多边形的对应边成比例,对应角相等是解题的关键8、B【解析】【分析】由DE是ABC的中位线,得DEBC,且DEB
12、C,则ADEABC,从而BC,从而解决问题【详解】解:点D、E是AB、AC的中点,DE是ABC的中位线,DEBC,且DEBC,ADEABC,ADE的面积是1,4,3,故选:B【点睛】本题考查了三角形中位线定理,三角形相似的判定和性质,熟练掌握中位线定理,灵活运用三角形相似的性质是解题的关键9、C【解析】【分析】根据题意先判断ADEABC,再根据相似三角形的面积之比等于相似比的平方进行分析计算即可得到结论【详解】解:DEBC,ADEABC,AD:BD3:2,ADE与四边形BCED的面积之比为9:16.故选:C.【点睛】本题考查相似三角形的判定和性质,注意掌握相似三角形的面积之比等于相似比的平方1
13、0、B【解析】【分析】直接利用三角形中位线定理得出DEBC,DE=BC,再利用相似三角形的判定与性质得出即可【详解】解:在ABC中,点D、E分别是AB、AC的中点,DEBC,DE=BC,ADE=B,AED=C,ADEABC,=,SABC=16,S四边形BCED= SABC-SADE=16-4=12故选B【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出ADEABC是解题关键二、填空题1、【解析】【分析】连接,根据直角三角形斜边中线等于斜边一半可得:,则点在线段的垂直平分线上,作线段的垂直平分线交轴,轴于点,则当时,最小,再利用相似三角形的判定和性质,结合勾股定理解答即可【详解】如
14、图:过点作于点,连接,为中点,点在线段的垂直平分线上作线段的垂直平分线交轴,轴于点,当,最小连接,则(,4),设,则,即,(,)在中当时, 最小故答案为:【点睛】本题考查了线段垂直平分线的判定和性质,直角三角形的性质,相似三角形的判定和性质,点到直线的距离,勾股定理等知识,能够综合熟练运用这些性质和判定是解题关键2、300【解析】【分析】设,根据题意证明,从而得到对应边的比相等,列出方程即可求得,进而求得正方形的边长【详解】解:正方形 中,分别是和的中点,设AF=AG=x,即解得故答案为:【点睛】本题考查了相似三角形的应用,正方形的性质,掌握相似三角形的性质与判定是解题的关键3、14【解析】【
15、分析】过A作轴于点E,根据反比例函数的比例系数k的几何意义可得,由,得,相似三角形面积的比等于相似比的平方,据此即可求得,从而求得k的值【详解】如图,作轴,则,轴,点A是OB中点,解得:,反比例函数过第一象限,故答案为:14【点睛】本题考查反比例函数系数k的几何意义、相似三角形的判定与性质,熟知“过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于”是解题的关键4、【解析】【分析】直接利用已知将原式变形进而得出x,y之间的关系进而得出答案【详解】解:,2x+2y=3x,故2y=x,则,故答案为:【点睛】此题主要考查了比例的性质,正确将原式变形是解题关键5、【解析】【分析】延
16、长交于点,先利用勾股定理可得,再根据三角形重心的性质可得,从而可得,然后根据相似三角形的判定证出,根据相似三角形的性质可得,最后根据三角形的面积公式即可得【详解】解:如图,延长交于点,点是的重心,点是的重心,又,解得,则的面积为,故答案为:【点睛】本题考查了三角形重心的性质、相似三角形的判定与性质等知识点,熟练掌握三角形重心的性质是解题关键三、解答题1、见解析【解析】【分析】由EACDAB,可推出BAC=DAE,再由B=D,即可证明ABCADE【详解】解:EACDAB,EAC+DAC=DAB+DAC,即BAC=DAE,又B=D,ABCADE【点睛】本题主要考查了相似三角形的判定,熟知相似三角形
17、的判定条件是解题的关键2、(1)m=2,y=x-1;(2)见解析;(3)存在实数p=1+132或1+52使得SAMN=4【解析】【分析】(1)将点B的坐标代入即可得出m的值,设直线l的解析式为y=kx+b,再把点A、B的坐标代入,解方程组求得k和b即可得出直线l的解析式;(2)根据点P在直线y=2上,求出点P的坐标,再证明PMBPNA即可;(3)先假设存在,利用SAMN=4SAMP求得p的值,看是否符合要求【详解】(1)解:B(2,1)在双曲线y=(x0)上,m=2,设直线l的解析式为y=kx+b,则k+b=02k+b=1解得k=1b=-1直线l的解析式为y=x-1;(2)证明:点P(p,p-
18、1)(p1),点P在直线y=2上,p-1=2,解得p=3,P(3,2),PNx轴,点M在双曲线y=上,点N在双曲线y=-2xM(1,2),N(-1,2),PM=2,PN=4,PA=3-12+2-02=2,PB=3-2BPM=APN,PM:PN=PB:PA=1:2,PMBPNA;(3)解:存在实数p,使得SAMN=4SAMPP(p,p-1)(p1),点M、N的纵坐标都为p-1,将y=p-1代入y=和y=-, 得x=2p-1和x=-2M、N的坐标分别为(2p-1,p-1),(-2p-1,当1p2时,MN=4p-1,PM=2p-1-SAMN=MN(p-1)=2,SAMP=MP(p-1)=-p2+p+
19、1,SAMN=4SAMP,2=4(-p2+p+1),整理,得p2-p-1=0,解得:p=151p2,p=1+5当p2时,MN=4p-1,PM=p-2SAMN=MN(p-1)=2,SAMP=MP(p-1)=p2-p-1,SAMN=4SAMP,2=4(p2-p-1),整理,得p2-p-3=0,解得p=113p大于2,p=1+13存在实数p=1+132或1+52使得SAMN=4【点睛】本题考查的是反比例函数的综合题,以及用待定系数法求反比例函数和一次函数的解析式,相似三角形的判定3、(1)EF=2(2)【解析】【分析】(1)根据DEBC证明ADE是等边三角形,再根据D是AB中点,可证明BFD是等边三
20、角形,在证明DEF是等边三角形,从而求得EF=2,(2)过点A作AM垂直BC于点M,可证DBFABM,由相似可求出DF=,在利用勾股定理即可求出EF【详解】解:(1)ABC是等边三角形,A=B=C=60,DEBC,ADE=ABC=60,A=ADE=60,ADE是等边三角形,AD=DE=2,D是AB中点,BD=AD=2,DF平分BDE,BDF=EDF=BDE=(180-60)=60,又B=60,BFD是等边三角形,DF=BD=2,DF=DE=2,EDF=60,DEF是等边三角形,EF=DE=DF=2;(2)过点A作AM垂直BC于点M,DEBC,DFDE,BFD=FDE=90,DFB=AMB=90,又B=B,DBFABM,D为AB中点,,DF=AM,AM是等边三角形BC边上的高,M是BC的中点, BM=BC=a,AM=,DF=AM=,在中,EF=【点睛】本题主要考查等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年03月成都市“蓉漂人才荟”成都高新区公开考核公开招聘10名事业单位工作人员笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2025年03月吉林省总工会《今天》杂志社笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 高级信息系统项目管理师综合知识押题密卷2
- 阜新高等专科学校《暖通空调工程施工》2023-2024学年第二学期期末试卷
- 暨南大学《体育测量评价》2023-2024学年第二学期期末试卷
- 中国科学院大学《规范写作B》2023-2024学年第一学期期末试卷
- 江阳城建职业学院《公共关系与沟通技巧》2023-2024学年第二学期期末试卷
- 上海民航职业技术学院《ROS机器人基础》2023-2024学年第二学期期末试卷
- 交流调频调压牵引装置项目风险分析和评估报告
- 林州建筑职业技术学院《建筑设计2》2023-2024学年第二学期期末试卷
- 马工程《思想政治教育学原理 第二版》课后习题详解
- 部编版语文三年级下册第八单元 有趣的故事 大单元整体作业设计
- 员工雇主责任险操作管理规定
- 工业机器人基础及应用高职全套教学课件
- 群众文化活动服务投标方案(技术标)
- 10KV配电室倒闸操作票
- 异想天开的科学游戏
- 线性光耦隔离电路
- 进货单(标准模版)
- 内科学泌尿系统疾病总论课件
- 法律文献检索
评论
0/150
提交评论